Solutions to Quiz 2 and Problem sheet 2
(non-homework problems)

1 Solutions to Quiz 2

2 Solutions to Problems sheet 2

Problem 1 (HW). Bipartite states, bra-ket notation and partial traces. If we want to
write a vector [v) € C% ® C? as an element of C%92 we order the product standard basis of
C% ® C% lexicographically. For example, under this ordering [01) € C?> ® C? is
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(a) Let |¢ag) = Hap = Ha @ Hp = C2 ® C3 be the vector given by

[YaB) = —=
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in the lexicographically ordered product basis. Write |1)4p) in bra-ket notation in the
product basis |ab) for Hap.

(b) Let [Yap) = Hap = Ha @ Hp = C3® C? be the vector given by

[Yarp) =

Sl-
w
_ o = O O

in the lexicographically ordered product basis. Write [1)4/p/) in bra-ket notation in the
computational for H 4 pr.

(c¢) Let Vap—yap denote the isometry H 450 — Hap that swaps the two subsystems, i.e.,
|zy) — |yx) for = € {0,1,2} and y € [0,1). Write down Vap,aplbarp) € Hap as a
6-dimensional vector as well as in bra-ket notation.



(d) Let pap = [Yap)¥ap| and 0 a4rpr = |Yarp X4 pr|. Compute the reduced density matrices
pA, pPB, o4 and opr.

Problem 2. Independence and product states. Show that if pxy is a probability distri-
bution, then X and Y are independent if and only if the corresponding density matrix pxy is
a product state, i.e., pxy = px ® py.

Solution. The density matrix pxy corresponding to the joint probability distribution pxy is
pxy = > pxy (@ y)leyfaeyl =Y pxy (@, y)|z)z] @ [y)yl-
7y 7y

If X and Y are independent, meaning pxy (z,y) = px(x)py (y), then we can factorize:

pxy—pr )|zXz| @ py ()|y)yl = <pr ) (Zpy )|y) yl)pr®py.

Conversely, if pxy = px ® py is a product state, then we have

pxy (z,y) = (zylpxylry) = (z|px|z)(ylpy|y)-

So we can define px (z) = (x|px|e) and py (y) = (ylpy|y)-. Finally,

S px(@) =Y (zlpxlz) = trlpx] = 1,

x
and similarly for py, so these are probability distributions. O

Problem 3. Tensor products of operators.

(a) If P € PSD(H) and @ € PSD(K), then P ® Q € PSD(H ® K).

(b) For any M € Lin(H), N € Lin(K), we have tr[M ® N| = tr[M] tr[N].

(¢) For any M € Lin(H), N € Lin(K), we have rank(M ® N) = rank(M ) rank(N).

(d) If M € Lin(H) and N € Lin(K) have one of the properties { Hermitian, projection, unitary},
then the tensor product M ® N has the property too.

Solution. (a) By the spectral theorem, we have diagonalizations

P=> "N, Q= pleXesl.

i=1 Jj=1
Then rs
PoQ=> ) Nuyli)vhs| ® |¢;)51-

i=1 j=s

We have \;p; > 0, for all 7, j, since P and () are positive semidefinite. Also, {|1;) ® |¢;)} forms
an orthonormal basis. Thus, P ® @) is positive semidefinite on



(b) Let {|15)} and {|¢;)} be bases of # and K, respectively. We have

tr[M @ N => " ((¢i| @ ($;)M @ N(|¢hi) ® |$;))

= Z<¢i‘M|¢i><¢j|N‘¢j>
- (i) - Sreivien
:tr[M] -tr[N].

(c) By the singular value decomposition, we have
T S
M= sile)fil, N =Y tlg)hl,
i=1 j=1

where r = rank(M) and s = rank(V). Further

MeN =" stjle)fil @ lgi)hi| = sitj(les) @ ;) ({fil @ (By]).
i

i’j

The latter is a singular value decomposition of M ® N and thus rank(M ® N) = rs.
(d) We have

(M|y) @ N|g))T

= (M|yp)T @ (N]g))T
(M7 @ ((|NT)
(¢l ® (¢))(M' & NT).

(M@ N)(lv) ®[¢)"

So, (M @ N)I = Mt ® NT, ie., if M and N are Hermitian, then so is M ® N.

If M> = M and N? = N, then (M ® N)> = M?® N> = M ® N. So if M and N are
projections, then so is M ® N.

If M and N are unitary, then

(MeN)(MoN)=Me@NYMeN)=MMeoNIN=ITeI=1,
so M ® N is also unitary. O

Problem 4 (HW). Product measurement. For measurements pa: 3 — PSD(A) and
up: Qo — PSD(B) on quantum systems A and B, the product measurement pa ® pp is defined
by the formula
(ha @ pp)(x1,22) = pa(r1) @ pp(z2),
for 1 € Q1 and x5 € Qs.
In the subproblems (c)—(e) assume that Alice and Bob share a maximally entangled state

) = J5(100) + [11)).

(a) Show that the formula defines a measurement.



(b) Prove that if we measure any state pap € S(AB) using the product measurement, then
the marginal probability of Alice’s outcome x; € 1 is the same as if Bob did not make
any measurement at all.

(¢) Suppose that Alice and Bob measure in the standard basis. What is the probability
distribution of the outcomes?

(d) Suppose that Alice and Bob measure in the X-basis |+) and |—). What is the probability
distribution of the outcomes?

(e) In both cases, what does the marginal distribution of the outcomes look like for Alice and
Bob? Relate this to their reduced states. Note that while the measurement outcomes are
correlated, performing local measurements on a maximally engangled state does not allow
them to communicate information.

Problem 5. More properties of partial trace. Let Msp € Lin(AB).
(a) For any Np € Lin(B), we have trg[(Ila ® Ng)Mapg] = trg[Map(Ia ® Np)].
(b) For any unitary Up € Lin(B), we have trg[(I4 ® Ug)Map(I4 ® UJTB)] = trp[Mag].
(c) For N; € Lin(A,C1) and Ny € Lin(Co, A), we have
trp[(N1 ® Ig)Map(Na ® Ig)] = Ny trg[Mag|Ns.
(d) For quantum system A, B, and C, and operator Mspc € Lin(ABC'), we have
trpltre[Mapcl]] = trpe[Mapc)-

Problem 6. Standard purification. We will again prove the lemma about purification in a
different way. Suppose that ps € S(A). Let |a) be a basis for H4 and let Hr = Ha. Prove
that

[War) =D _(vPa @ Ip)|aa) € Ha® Hp

a

is a purification of p4. This is the standard purification.

Solution. We just have to check that trr[|var) ¥ ar|] = pa. We have

trrllYar)varl] = Y trrl(v/pa ® Ir)|aa)bb|(v/pa @ IR)]

a,b
=Y trr[(v/pa @ Ir)(Vpa ® Ir)|aa)(bb]
a,b
= trrl(pa ® Ir)(|la)b| @ a)d])]
a,b
= trrl(pa ® Ir)(|la)b| @ a)d])]
a,b

= (pala)d]) tr[la)bl]
a,b
= pala)al

= pa-



Problem 7. Purity of quantum states. The purity of a quantum state p is defined as
P(p) = tr[p?].

(a) For p € S(A), dim(H4) = d, prove

< P(p) <1

S

When is equality achived?
(b) Let pap € S(AB) be a pure state with marginal states p4 and pp. Show that P(p4) =
P(pp).

Solution. (a) Using the spectral decomposition, we can write p = Zgzl Aa|iX0i|, where {|v;)}
is a basis of Ha, \; > 0, and >, A; = 1. Since p* = >, A2[¢h; {¢0i|, we have tr[p?] = >, A\ =
(Zz >\i)2 — Zi;ﬁj /\i)\j =1- Zi?éj )\i>\j < 1 since )\i > 0.

Using CS-inequality, we get (>, A;)% < >, A2 3.1, which implies

2
Z 1 Z 1
i)\?Zd<i)\i> S

which gives the lower bound. The equality for the upper bound occurs if and only if p is a pure
state. The equality for the lower bound occurs if and only if p is a maximally mixed state.
(b) Let d = min(dim(H ), dim(#Hp)). We apply the Schmidt decomposition and get

d
[WaB) =Y siles) @ |fi)-
=1

The marginal states are given by

d d
pa=Y el pn = SIRNAL
i=1 1=1

Therefore, P(pa) = P(pB). O
Problem 8. Marginal problem for maximally enganlged states.
(a) Let pap € S(AB). Show that if p4 is pure, the pap = pa ® pp. Hint: consider a
purification of pap.
(b) Suppose that papc € S(ABC) and suppose that pap is pure. Show taht ppc = p ® po
(¢) Let papc € S(ABC) be such that pap are ppc are pure. Show that papc = pa®pe®pc

(d) Conclude that there can be no state papc on three qubits such that p4p is maximally
entangled and ppc is maximally entangled.
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