
Solutions to Quiz 2 and Problem sheet 2

(non-homework problems)

1 Solutions to Quiz 2

2 Solutions to Problems sheet 2

Problem 1 (HW). Bipartite states, bra-ket notation and partial traces. If we want to
write a vector |v⟩ ∈ Cd1 ⊗ Cd2 as an element of Cd1d2 , we order the product standard basis of
Cd1 ⊗ Cd2 lexicographically. For example, under this ordering |01⟩ ∈ C2 ⊗ C2 is

0
1
0
0

 ∈ C4.

(a) Let |ψAB⟩ = HAB = HA ⊗HB = C2 ⊗ C3 be the vector given by

|ψAB⟩ =
1√
3



1
0
0
1
0
1


in the lexicographically ordered product basis. Write |ψAB⟩ in bra-ket notation in the
product basis |ab⟩ for HAB.

(b) Let |ψA′B′⟩ = HA′B′ = HA′ ⊗HB′ = C3 ⊗ C2 be the vector given by

|ψA′B′⟩ = 1√
3



1
0
0
1
0
1


in the lexicographically ordered product basis. Write |ψA′B′⟩ in bra-ket notation in the
computational for HA′B′ .

(c) Let VA′B′→AB denote the isometry HA′B′ → HAB that swaps the two subsystems, i.e.,
|xy⟩ 7→ |yx⟩ for x ∈ {0, 1, 2} and y ∈ |0, 1⟩. Write down VA′B′→AB|ψA′B′⟩ ∈ HAB as a
6-dimensional vector as well as in bra-ket notation.
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(d) Let ρAB = |ψAB⟩⟨ψAB| and σA′B′ = |ψA′B′⟩⟨ψA′B′ |. Compute the reduced density matrices
ρA, ρB, σA′ and σB′ .

Problem 2. Independence and product states. Show that if pXY is a probability distri-
bution, then X and Y are independent if and only if the corresponding density matrix ρXY is
a product state, i.e., ρXY = ρX ⊗ ρY .

Solution. The density matrix ρXY corresponding to the joint probability distribution pXY is

ρXY =
∑
x,y

pXY (x, y)|xy⟩⟨xy| =
∑
x,y

pXY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y|.

If X and Y are independent, meaning pXY (x, y) = pX(x)pY (y), then we can factorize:

ρXY =
∑
x,y

pX(x)|x⟩⟨x| ⊗ pY (y)|y⟩⟨y| =

(∑
x

pX(x)|x⟩⟨x|

)
⊗

(∑
y

pY (y)|y⟩⟨y|

)
= ρX ⊗ ρY .

Conversely, if ρXY = ρX ⊗ ρY is a product state, then we have

pXY (x, y) = ⟨xy|ρXY |xy⟩ = ⟨x|ρX |x⟩⟨y|ρY |y⟩.

So we can define pX(x) = ⟨x|ρX |x⟩ and pY (y) = ⟨y|ρY |y⟩. Finally,∑
x

pX(x) =
∑
x

⟨x|ρX |x⟩ = tr[ρX ] = 1,

and similarly for pY , so these are probability distributions.

Problem 3. Tensor products of operators.

(a) If P ∈ PSD(H) and Q ∈ PSD(K), then P ⊗Q ∈ PSD(H⊗K).

(b) For any M ∈ Lin(H), N ∈ Lin(K), we have tr[M ⊗N ] = tr[M ] tr[N ].

(c) For any M ∈ Lin(H), N ∈ Lin(K), we have rank(M ⊗N) = rank(M) rank(N).

(d) IfM ∈ Lin(H) andN ∈ Lin(K) have one of the properties {Hermitian, projection, unitary},
then the tensor product M ⊗N has the property too.

Solution. (a) By the spectral theorem, we have diagonalizations

P =
r∑

i=1

λi|ψi⟩⟨ψi|, Q =
s∑

j=1

µj |ϕj⟩⟨ϕj |.

Then

P ⊗Q =

r∑
i=1

s∑
j=s

λiµj |ψi⟩⟨ψi| ⊗ |ϕj⟩⟨ϕj |.

We have λiµj ≥ 0, for all i, j, since P and Q are positive semidefinite. Also, {|ψi⟩ ⊗ |ϕj⟩} forms
an orthonormal basis. Thus, P ⊗Q is positive semidefinite on
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(b) Let {|ψi⟩} and {|ϕj⟩} be bases of H and K, respectively. We have

tr[M ⊗N ] =
∑
i,j

(⟨ψi| ⊗ ⟨ϕj |)M ⊗N(|ψi⟩ ⊗ |ϕj⟩)

=
∑
i,j

⟨ψi|M |ψi⟩⟨ϕj |N |ϕj⟩

=

(∑
i

⟨ψi|M |ψi⟩

)
·

∑
j

⟨ϕj |N |ϕj⟩


= tr[M ] · tr[N ].

(c) By the singular value decomposition, we have

M =

r∑
i=1

si|ei⟩⟨fi|, N =

s∑
j=1

tj |gj⟩⟨hj |,

where r = rank(M) and s = rank(N). Further

M ⊗N =
∑
i

∑
j

sitj |ei⟩⟨fi| ⊗ |gj⟩⟨hj | =
∑
i,j

sitj(|ei⟩ ⊗ |gj⟩)(⟨fi| ⊗ ⟨hj |).

The latter is a singular value decomposition of M ⊗N and thus rank(M ⊗N) = rs.
(d) We have

((M ⊗N)(|ψ⟩ ⊗ |ϕ⟩))† = (M |ψ⟩ ⊗N |ϕ⟩)†

= (M |ψ⟩)† ⊗ (N |ϕ⟩)†

= (⟨ψ|M †)⊗ (⟨ψ|N †)

= (⟨ψ| ⊗ ⟨ϕ|)(M † ⊗N †).

So, (M ⊗N)† =M † ⊗N †, i.e., if M and N are Hermitian, then so is M ⊗N .
If M2 = M and N2 = N , then (M ⊗ N)2 = M2 ⊗ N2 = M ⊗ N . So if M and N are

projections, then so is M ⊗N .
If M and N are unitary, then

(M ⊗N)†(M ⊗N) = (M † ⊗N †)(M ⊗N) =M †M ⊗N †N = I ⊗ I = I,

so M ⊗N is also unitary.

Problem 4 (HW). Product measurement. For measurements µA : Ω1 → PSD(A) and
µB : Ω2 → PSD(B) on quantum systems A and B, the product measurement µA⊗µB is defined
by the formula

(µA ⊗ µB)(x1, x2) = µA(x1)⊗ µB(x2),

for x1 ∈ Ω1 and x2 ∈ Ω2.
In the subproblems (c)–(e) assume that Alice and Bob share a maximally entangled state

|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

(a) Show that the formula defines a measurement.
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(b) Prove that if we measure any state ρAB ∈ S(AB) using the product measurement, then
the marginal probability of Alice’s outcome x1 ∈ Ω1 is the same as if Bob did not make
any measurement at all.

(c) Suppose that Alice and Bob measure in the standard basis. What is the probability
distribution of the outcomes?

(d) Suppose that Alice and Bob measure in the X-basis |+⟩ and |−⟩. What is the probability
distribution of the outcomes?

(e) In both cases, what does the marginal distribution of the outcomes look like for Alice and
Bob? Relate this to their reduced states. Note that while the measurement outcomes are
correlated, performing local measurements on a maximally engangled state does not allow
them to communicate information.

Problem 5. More properties of partial trace. Let MAB ∈ Lin(AB).

(a) For any NB ∈ Lin(B), we have trB[(IA ⊗NB)MAB] = trB[MAB(IA ⊗NB)].

(b) For any unitary UB ∈ Lin(B), we have trB[(IA ⊗ UB)MAB(IA ⊗ U †
B)] = trB[MAB].

(c) For N1 ∈ Lin(A,C1) and N2 ∈ Lin(C2, A), we have

trB[(N1 ⊗ IB)MAB(N2 ⊗ IB)] = N1 trB[MAB]N2.

(d) For quantum system A, B, and C, and operator MABC ∈ Lin(ABC), we have

trB[trC [MABC ]] = trBC [MABC ].

Problem 6. Standard purification. We will again prove the lemma about purification in a
different way. Suppose that ρA ∈ S(A). Let |a⟩ be a basis for HA and let HR = HA. Prove
that

|ψAR⟩ =
∑
a

(
√
ρA ⊗ IR)|aa⟩ ∈ HA ⊗HR

is a purification of ρA. This is the standard purification.

Solution. We just have to check that trR[|ψAR⟩⟨ψAR|] = ρA. We have

trR[|ψAR⟩⟨ψAR|] =
∑
a,b

trR[(
√
ρA ⊗ IR)|aa⟩⟨bb|(

√
ρA ⊗ IR)]

=
∑
a,b

trR[(
√
ρA ⊗ IR)(

√
ρA ⊗ IR)|aa⟩⟨bb|]

=
∑
a,b

trR[(ρA ⊗ IR)(|a⟩⟨b| ⊗ |a⟩⟨b|)]

=
∑
a,b

trR[(ρA ⊗ IR)(|a⟩⟨b| ⊗ |a⟩⟨b|)]

=
∑
a,b

(ρA|a⟩⟨b|) tr[|a⟩⟨b|]

=
∑
a

ρA|a⟩⟨a|

= ρA.
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Problem 7. Purity of quantum states. The purity of a quantum state ρ is defined as
P (ρ) = tr[ρ2].

(a) For ρ ∈ S(A), dim(HA) = d, prove

1

d
≤ P (ρ) ≤ 1.

When is equality achived?

(b) Let ρAB ∈ S(AB) be a pure state with marginal states ρA and ρB. Show that P (ρA) =
P (ρB).

Solution. (a) Using the spectral decomposition, we can write ρ =
∑d

i=1 λa|ψi⟩⟨ψi|, where {|ψi⟩}
is a basis of HA, λi ≥ 0, and

∑
i λi = 1. Since ρ2 =

∑
i λ

2
i |ψi⟩⟨ψi|, we have tr[ρ2] =

∑
i λ

2
i =

(
∑

i λi)
2 −

∑
i̸=j λiλj = 1−

∑
i̸=j λiλj ≤ 1 since λi ≥ 0.

Using CS-inequality, we get (
∑

i λi)
2 ≤

∑
i λ

2
i

∑
i 1, which implies

∑
i

λ2i ≥
1

d

(∑
i

λi

)2

=
1

d
,

which gives the lower bound. The equality for the upper bound occurs if and only if ρ is a pure
state. The equality for the lower bound occurs if and only if ρ is a maximally mixed state.

(b) Let d = min(dim(HA), dim(HB)). We apply the Schmidt decomposition and get

|ψAB⟩ =
d∑

i=1

si|ei⟩ ⊗ |fi⟩.

The marginal states are given by

ρA =
d∑

i=1

s2i |ei⟩⟨ei|, ρB =
d∑

i=1

s2i |fi⟩⟨fi|.

Therefore, P (ρA) = P (ρB).

Problem 8. Marginal problem for maximally enganlged states.

(a) Let ρAB ∈ S(AB). Show that if ρA is pure, the ρAB = ρA ⊗ ρB. Hint: consider a
purification of ρAB.

(b) Suppose that ρABC ∈ S(ABC) and suppose that ρAB is pure. Show taht ρBC = ρB ⊗ ρC

(c) Let ρABC ∈ S(ABC) be such that ρAB are ρBC are pure. Show that ρABC = ρA⊗ρB⊗ρC
(d) Conclude that there can be no state ρABC on three qubits such that ρAB is maximally

entangled and ρBC is maximally entangled.
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