## Solutions to Quiz 1 and Problem sheet 1 (non-homework problems)

## 1 Solutions to Quiz 1

## 2 Solutions to Problems sheet 1

Problem 1. Consider the following linear operators.

$$\rho_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \quad \rho_2 = \frac{1}{2} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, \quad \rho_3 = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \rho_4 = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

- (a) Which of the  $\rho_i$  are density matrices? Which correspond to pure states?
- (b) Write  $\rho_i$  in bra-ket notation.
- (c) Write a spectral decomposition for those  $\rho_i$  that are Hermitian.

Solution. (a) All the matrices have trace one, so we need to check PSD. A matrix is PSD if and only if it is Hermitian and has non-negative eigenvalues. Matrices  $\rho_2$ ,  $\rho_3$  and  $\rho_4$  are Hermitian, so we need to check their eigenvalues. For  $2 \times 2$  matrices, the eigenvalues sum to the trace and multiply to the determinant. Since the eigenvalues must sum to a positive number (in this case 1) they are non-negative if and only if the determinant is non-negative. Thus, only  $\rho_2$  and  $\rho_3$  are positive semidefinite.

(b)

$$\begin{split} \rho_1 &= |0\rangle\!\langle 0| + |1\rangle\!\langle 0|, \\ \rho_2 &= \frac{1}{3}(2|0\rangle\!\langle 0| + |0\rangle\!\langle 1| + |0\rangle\!\langle 1| + |1\rangle\!\langle 1|), \\ \rho_3 &= \frac{1}{2}(|0\rangle\!\langle 0| - |1\rangle\!\langle 0| - |0\rangle\!\langle 1| + |1\rangle\!\langle 1|), \\ \rho_4 &= \frac{1}{2}(|0\rangle\!\langle 0| + 2|0\rangle\!\langle 1| + 2|1\rangle\!\langle 0| + |1\rangle\!\langle 1|). \end{split}$$

(c)

$$\rho_2 = \lambda_+ |\psi_+\rangle \langle \psi_+| + \lambda_- |\psi_-\rangle \langle \psi_-|,$$

where

$$\lambda_{\pm} = \frac{3 \pm \sqrt{5}}{6}, \quad |\psi_{+}\rangle = \sqrt{\frac{1 + \sqrt{5}}{2\sqrt{5}}} |0\rangle + \sqrt{\frac{2}{(1 + \sqrt{5})\sqrt{5}}} |1\rangle,$$
$$|\psi_{-}\rangle = -\sqrt{\frac{2}{(1 + \sqrt{5})\sqrt{5}}} |0\rangle + \sqrt{\frac{1 + \sqrt{5}}{2\sqrt{5}}} |1\rangle.$$

$$\rho_3 = |\psi\rangle\langle\psi|,$$

where  $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ .

$$\rho_4 = \frac{3}{2} |\psi_{3/2}\rangle \langle \psi_{3/2}| - \frac{1}{2} |\psi_{-1/2}\rangle \langle \psi_{-1/2}|,$$

where  $|\psi_{3/2}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$  and  $|\psi_{-1/2}\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ .

**Problem 2.** Mixed states as probabilistic mixtures. For each of the following scenarios, write down the density matrix that results from the described procedure. Write down the density matrix both in bra-ket notation and in matrix form. All systems are qubits.

- (a) Alice flips a fair coin. If the coin is heads, she prepares the state  $|0\rangle$ . If the coin lands tails, she perpares  $|+\rangle$ . You receive the state (but not the result of the coin toss).
- (b) Alice measures the state  $|0\rangle$  in the X-basis, with outcomes + and -. Upon finding outcome +, she prepares the state  $|0\rangle$ , while upon finding -, she prepares  $|1\rangle$ . You receive the state (but not the measurement outcome).
- (c) Alice has the state  $\frac{1}{\sqrt{5}}(|0\rangle + 2|1\rangle)$  and measures in the standard basis. If she obtains outcome 0, she prepares the state  $|0\rangle$ . If she obtains outcome  $|1\rangle$ , she perpares  $|+\rangle$  with probability 1/2 and  $|-\rangle$  with probability 1/2.

Solution. (a) With probability 1/2, the system is in the state  $|0\rangle$ , and with probability 1/2 it is in state  $|+\rangle$ . So, the density matrix is

$$\rho = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|+\rangle\langle +| = \frac{1}{4}\begin{pmatrix} 3 & 1\\ 1 & 1 \end{pmatrix}.$$

(b) By measuring  $|0\rangle$  in the X-basis, the probability of getting + is 1/2 and the probability of getting - is 1/2. So, the density matrix is

$$\rho = \frac{1}{2}|0\rangle\!\langle 0| + \frac{1}{2}|1\rangle\!\langle 1| = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(c) We measure  $\frac{1}{\sqrt{5}}(|0\rangle + 2|1\rangle)$  in Z-basis. We get

$$\mathbb{P}(0) = \operatorname{tr}[|\psi\rangle\langle\psi|\cdot|0\rangle\langle0|] = |\langle\psi|0\rangle|^2 = \frac{1}{5}.$$

Similarly,  $\mathbb{P}(1) = \frac{4}{5}$ . If the first measurement gives 0, she prepares  $\rho_0 = |0\rangle\langle 0|$ . If the first measurement gives 1, she prepares  $\rho_1 = \frac{1}{2}|+\rangle\langle +|+\frac{1}{2}|-\rangle\langle -|=\frac{1}{2}I$ . Overall, we get

$$\rho = \frac{1}{5}\rho_0 + \frac{4}{5}\rho_1 = \frac{1}{5} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}.$$