Quiz 4: Quantum Channels

Question 1. Which of the following statements are true?

- (a) Any map of the form $\rho \mapsto A\rho A^{\dagger}$ is completely positive.
- (b) The transpose map $\rho \mapsto \rho^T$ is completely positive.
- (c) If $\Phi_{A\to B}$ is completely positive, the so is $\Phi_{A\to B}\otimes \mathcal{I}_{C\to C}$.
- (d) The composition of two completely positive maps is also completely positive.

Question 2. Which of the following statements are true?

- (a) Any map of the form $\rho \mapsto A\rho A^{\dagger}$ is trace preserving.
- (b) The Hermitian conjugate map $M \mapsto M^{\dagger}$ is trace preserving.
- (c) The tensor product of two trace preserving maps is also trace preserving.
- (d) The composition of two trace preserving maps is also trace preserving.

Question 3. Which of the following are quantum channels?

- (a) $\Phi_{A\to B}$: $\rho_A \mapsto \sigma_B \operatorname{tr}[\rho_A]$, for some fixed $\rho_B \in S(B)$.
- (b) $\Phi_{A\to\mathbb{C}^2}$: $\rho\mapsto (|0\rangle\langle 0|\operatorname{tr}[\rho^2]+|1\rangle\langle 1|(1-\operatorname{tr}[\rho^2]))\operatorname{tr}[\rho]$.
- (c) $\Phi_{\mathbb{C}^2 \to \mathbb{C}} : \rho \mapsto \operatorname{tr}[\rho Z]$.
- (d) $\Phi_{A\to A} : \rho \mapsto 2 \cdot \frac{1}{\dim(\mathcal{H}_A)} \mathbb{1}_A \rho$.

Question 4. Consider the replacement channel $\Phi_{A\to B}$: $\rho_A \mapsto \sigma_B \operatorname{tr}[\rho_A]$. Which of the following statements are true?

- (a) $\Phi_{A\to B}$ has a Kraus representation given by $X_a = \sqrt{\sigma_B} \langle a|$, where $\{|a\rangle\}_a$ is a basis for A.
- (b) If $\sigma_B = |\psi\rangle\langle\psi|$ is a pure state, $\Phi_{A\to B}$ has a Kraus representation given by $X_a = |\psi\rangle\langle a|$, where $\{|a\rangle\}_a$ is a basis for A.

Question 5. Suppose that we have a machine that takes one qubit as its input. With probability 1/2, the machine will apply the Pauli operator X (a bit flip), and otherwise the machine will do nothing to the state. What is the quantum channel corresponding to the machine?

- (a) $\rho \mapsto \frac{1}{2} \mathbb{1} \operatorname{tr}[\rho]$.
- (b) $\rho \mapsto \frac{1}{2}(\rho + X\rho X)$.
- (c) $\rho \mapsto \frac{1}{2}(\rho + \frac{1}{2}\mathbb{1}\operatorname{tr}[\rho]).$
- (d) $\rho \mapsto \frac{1}{2}(X\rho X + \frac{1}{2}\mathbb{1}\operatorname{tr}[\rho]).$

Question 6. Let Φ be the channel from the previous question. What is the action of Φ on the Bloch sphere?

- (a) Reflection in the y, z-plane.
- (b) Projection onto the y, z-plane.
- (c) A rotation of π radians about the x-axis.
- (d) Projection onto the x-axis.

Question 7. Suppose that we have a machine taking a one quibit as its input The machine measures in the Z-basis, i.e. $\{|0\rangle, |1\rangle\}$. If the measurement outcome is 0, then the machine prepares the state $|\psi\rangle$, else it prepares the state $|\phi\rangle$. What is the quantum channel corresponding to the machine?

- (a) $\rho \mapsto \langle 0|\rho|0\rangle|\psi\rangle\langle\psi| + \langle 1|\rho|1\rangle|\phi\rangle\langle\phi|$.
- (b) $\rho \mapsto \langle \psi | \rho | \psi \rangle | 0 \rangle \langle 0 | + \langle \phi | \rho | \phi \rangle | 1 \rangle \langle 1 |$.
- (c) $\rho \mapsto \frac{1}{2} (\langle 0|\rho|0\rangle|\psi\rangle\langle\psi| + \langle 1|\rho|1\rangle|\phi\rangle\langle\phi|).$
- (d) $\rho \mapsto \frac{1}{2} (\langle \psi | \rho | \psi \rangle | 0 \rangle \langle 0 | + \langle \phi | \rho | \phi \rangle | 1 \rangle \langle 1 |).$