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Abstract

These are lecture notes for the course NMMB537 Quantum Information Theory, taught at Fac-
ulty of Mathematics and Physics, Charles University. The lecture notes are mostly inspired by
the course NMAK14020U Quantum Information Theory, offered at University of Copenhagen.
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Chapter 1

Quantum States and Measurements

We start by describing a precise mathematical framework for quantum states.

1.1 Finite-dimensional Hilbert Spaces

Axiom 1 (Hilbert space). To every quantum system we asocciate a Hilbert space H.

We only consider finite-dimensional Hilbert spaces in this course. If dim(H) = d, then H is
isomorphic to

Cd =


ψ1

...
ψd

 : ψi ∈ C


with the standard inner product

⟨ψ|ϕ⟩ =
d∑
i=1

ψiϕi.

Bra-ket notation. We write |ψ⟩ ∈ H for any vector. By ⟨ψ| ∈ H†, we mean the linear map
H → C defined by ⟨ψ|(|ϕ⟩) = ⟨ψ|ϕ⟩. In other words, ⟨ψ| is the row vector corresponding to the
conjugate transpose of |ψ⟩. We denote the standard basis of Cd by |0⟩, |1⟩, . . . , |d⟩. That is, |i⟩
has 1 on the ith coordinate and 0 elsewhere.

Linear algebra notation. Every basis that we will consider will be orthogonal. If there is
no confusion, we will use the terms linear map and matrix interchangeably.

By Lin(H,K), we denote the set of linear maps H → K. When we fix the standard bases,
we can express M ∈ Lin(H,K) as

M =
∑
i,j

Mij |i⟩⟨j|.

Note that ⟨i|M |j⟩ =Mij ∈ C.

Exercise 1.1. Write
∑

i,j∈{0,1} ij|i⟩⟨j| as a matrix.
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If M ∈ Lin(H,H) = Lin(H), then the trace with respect to the standard basis is

tr[M ] =
∑
i

Mii =
∑
i

⟨i|M |i⟩.

An important fact about trace is that it is in fact independent of the basis. Recall also that
tr[MN ] = tr[NM ].

Here are some important types of matrices:

• M ∈ Lin(H) is Hermitian if M † =M .

• P ∈ Lin(H) is positive if ⟨ψ|P |ψ⟩ ≥ 0, for all |ψ⟩ ∈ H. PSD(H) is the class of all positive
matrices. We also use the notation P ≥ 0 to indicate that P is positive. IfM,N ∈ Lin(H),
then we define M ≥ N if M −N ≥ 0, that is, if M −N is positive.

• U ∈ Lin(H) is unitary if U †U = UU † = I. U(H) is the class of all unitary matrices.

• V ∈ Lin(H,K) is an isometry if V †V = I.

• P ∈ Lin(H) is a projection if P † = P and P 2 = P .

Exercise 1.2. Are the following matrices {Hermitian,PSD, unitary,projections}?(
1 0
0 −1

)
,

(
1 0
0 0

)
,

1

2

(
1 1
1 1

)
,

(
1 2
3 4

)
,

(
ei

π
4 0

0 e−i
π
4

)
.

Theorem 1.3 (Spectral theorem for Hermitian matrices). If M ∈ Lin(H) is Hermitian d × d
matrix, thenM has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and there is a basis of eigenvectors {|ψi⟩}di=1

such that

M =

d∑
i=1

λi|ψi⟩⟨ψi|.

Recall that the eigenvalues can have multiple occurences and the basis of eigenvectors may
not be unique. Indeed, for instance,

I =
d∑
i=1

|ψi⟩⟨ψi|

is true for any basis {|ψi⟩}di=1.
This allows us to define functions of Hermitian matrices. If f : R → R is a function, then

we can define

f(M) =

d∑
i=1

f(λi)|ψi⟩⟨ψi|.

For instance,
√
M =

d∑
i=1

√
λi|ψi⟩⟨ψi|.

Note that if P is a projection, then the condition P 2 = P implies that the eigenvalues are
in {0, 1}. Thus, we can write P =

∑r
i=1 |ψi⟩⟨ψi|. Here, r = rank(P ) of the projection P .
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Theorem 1.4 (Characterization of positive matrices). If P ∈ Lin(H), then the following are
equivalent:

(a) P is positive, i.e., ⟨ψ|P |ψ⟩ ≥ 0, for all |ψ⟩ ∈ H.

(b) P † = P and all eigenvalues are nonnegative.

(c) There is M ∈ Lin(H,K) such that P =M †M .

(d) tr[PQ] ≥ 0, for every Q ∈ PSD(H).

Exercise 1.5. Prove that if P ∈ PSD(H) and M ∈ Lin(H,K), then MPM † is positive.

1.2 Quantum States

Definition 1.6. A density matrix is a positive operator ρ ∈ PSD(H) with tr[ρ] = 1. We put
S(H) = {ρ ∈ PSD(H) : tr[ρ] = 1}.

Axiom 2. The state of a quantum system with Hilbert space H is described by a density matrix
ρ. We will refer to ρ as a quantum state.

Example 1.7 (classical states). In probability theory we have a finite set of outcomes Σ with
a probability distribution p such that p(x) ≥ 0, for x ∈ Σ, and

∑
x∈Σ p(x) = 1. If H has a basis

{|x⟩}x∈Σ, then
ρ =

∑
x∈Σ

|x⟩⟨x|

is a density matrix. Conversely, any diagonal density matrix corresponds to a probability
distribution.

Example 1.8 (pure states). Let |ψ⟩ ∈ H be a unit vector. Then ρ = |ψ⟩⟨ψ| is a density matrix
since tr[|ψ⟩⟨ψ|] = tr[⟨ψ|ψ⟩] = 1. If |ψ⟩ = α|0⟩+ β|1⟩, then

|ψ⟩⟨ψ| =
(
|α|2 αβ
αβ |β|2

)
.

Note that replacing |ψ⟩ by eiθ|ψ⟩ does not change the density matrix.

Exercise 1.9. Is ρ = 1
2

(
1 1
1 1

)
a pure state?

Solution. Yes, since ρ = |+⟩⟨+|, where |+⟩ = 1√
2
(|0⟩+ |1⟩).

Example 1.10 (general state). Let ρ be a general quantum state. By Theorem 1.4, we can
write

ρ =
d∑
i=1

pi|ψi⟩⟨ψi|,

where pi ≥ 0. Since ρ is diagonal in the basis {|ψi⟩}di=1 and trace is independent of the

chosen basis, tr[ρ] = 1 implies that
∑d

i=1 pi = 1. So, the eigenvalues pi’s define a probability
distribution. We may interpret ρ as if we have the pure state |ψi⟩⟨ψi| with probability pi. We
call ρ a mixed state if it is not pure.

However, note that the decomposition of ρ given above is not unique. It is possible that ρ
may be written as a sum over some different probabilities and different states, even different
number of states.
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Exercise 1.11. What is the state corresponding to 50% chance of |0⟩ and 50% chance of |+⟩?

Solution.

ρ =
1

2
|0⟩⟨0|+ 1

2
|+⟩⟨+| = 1

2

(
1 0
0 0

)
+

1

4

(
1 1
1 1

)
=

(
3/4 1/4
1/4 1/4

)
.

Note that the eigenvalues of ρ are 1/2 +
√
5/4 and 1/2 −

√
5/4, so the spectral decomposition

of ρ gives a completely different decomposition of ρ compared to the one we started with.

Definition 1.12. The state τ = 1
dI is called the maximally mixed state.

1.3 Bloch Sphere

How does the set S(H) look like? For two states ρ1, ρ2 ∈ S(H) and t ∈ [0, 1], the convex
combination tρ1 + (1− t)ρ2 is also a state. In fact, we have the following lemma.

Lemma 1.13. The set S(H) ⊆ Lin(H) is convex. Moreoever, the extreme points of S(H) are
exactly the pure states.

For the particular case of one qubit, there is a visualization known as the Bloch sphere.
Hermitian 2× 2 matrices have the following (real) basis:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The last three matrices are known as Pauli matrices. Here are some of their properties:

X2 = Y 2 = Z2 = I, XY = iZ = −Y X, tr[X] = tr[Y ] = tr[Z] = 0.

In particular, Pauli matrices are unitary and have eigenvalues ±1.
Every 2 × 2 Hermitian matrix can be written in a unique way as a linear combination of

the matrices I,X, Y, Z with all coefficients being real numbers. An arbitrary 2 × 2 Hermitian
matrix ρ with tr[ρ] = 1 can be expressed as

ρ =
1

2
(I + xX + yY + zZ) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
. (1.3.1)

The coefficient 1/2 in front of the I is fixed by the condition tr[ρ] = 1. Further, tr[ρ] = 1 implies
that the eigenvalues of ρ are λ and 1− λ, for some λ ∈ R. If we want ρ to be a quantum state,
it also has to be positive, which is equivalent to requiring that λ ≥ 0 and 1 − λ ≥ 0. Now, λ
and 1− λ are nonnegative if and only if det(ρ) = λ(1− λ) ≥ 0. We compute

det(ρ) =
1

4
((1 + z)(1− z)− (x+ iy)(x− iy)) =

1

4
(1− x2 − y2 − z2).

If we let r = (x, y, z) ∈ R3, then ρ ≥ 0 if and only if ∥r∥ ≤ 1. If ρ is a pure state, then
rank(ρ) = 1 and det(ρ) = 0, which is equivalent to ∥r∥ = 1. Thus, pure states correspond
exactly to the unit sphere in R3 and mixed states correspond to the open unit ball.

Exercise 1.14. What is the pure state |ψ⟩ and its density matrix |ψ⟩⟨ψ| corresnponding to
r1 = (0, 1, 0) and to r2 = (0,−1, 0).
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Solution. By plugging r1 into Eq. (1.3.1), we get

ρ1 =
1

2

(
1 −i
i 1

)
.

We can easily calculate, that the eigenvector corresnponding to the eigenvalue 1 of ρ1 is |ψ1⟩ =
1√
2
(|0⟩ + i|1⟩). By Theorem 1.3, we get ρ1 = |ψ1⟩⟨ψ1|. Similarly, we get that ρ2 = |ψ2⟩⟨ψ2|,

where |ψ2⟩ = 1√
2
(|0⟩ − i|1⟩).

We have the following important bases of pure states that correspond to the intersection
points of x, y, z-axes with the Bloch sphere:

• Z-basis: {|0⟩, |1⟩}, r = (0, 0, 1), −r = (0, 0,−1).

• X-basis: {|+⟩, |−⟩}, r = (1, 0, 0), −r = (−1, 0, 0)

• Y -basis: {|+ i⟩, | − i⟩}, r = (0, 1, 0), −r = (0,−1, 0).

1.4 Measurements

Definition 1.15. A measurement or a positive operator valued measure (POVM) on a Hilbert
space H with a finite set of outcomes Ω is a function µ : Ω → PSD(H) such that

∑
x∈Ω µ(x) = I.

If µ(x) are projections, then the measurement is called projective.

Axiom 3. If we measure a state ρ using µ, then the probability of getting an outcome x ∈ Ω
is p(x) = tr[µ(x)ρ].

Remark 1.16. In general in quantum mechanics, it is not possible to perform measurements on
a state without changing it. However, for now, we will not consider what happens with a state
after the measurement (we can think that it is destroyed). We only get classical information
about which outcome occured. We will discuss post-measurement states later in the course.

Exercise 1.17. Prove that if ρ is a quantum state and µ is a measurement, then p(x) = tr[µ(x)ρ]
defines a probability distribution on Ω.

Solution. By Theorem 1.4(d), we have tr[µ(x)ρ] ≥ 0 since both µ(x) and ρ are positive. By the
linearity of trace, ∑

x∈Ω
tr[µ(x)ρ] = tr[

∑
x∈Ω

µ(x)ρ] = tr[Iρ] = 1.

Example 1.18 (basis measurement). Let {|ψi⟩}di=1 be an orthonormal basis and let µ(i) =
|ψi⟩⟨ψi| be the projection onto |ψi⟩. We get

p(i) = tr[|ψi⟩⟨ψi|ρ] = tr[⟨ψi|ρ|ψi⟩] = ⟨ψi|ρ|ψi⟩.

In particular, if ρ = |ϕ⟩⟨ϕ| is a pure state, then we get

p(i) = ⟨ψi||ϕ⟩⟨ϕ||ψi⟩ = |⟨ψi|ϕ⟩|2.

Exercise 1.19. What are the outcome probabilities when we measure |0⟩ the X-basis?

Solution. We get |+⟩ with probability |⟨+|0⟩|2 = 1/2 and |−⟩ with probability |⟨−|0⟩|2 =
1/2.
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1.5 Bloch Sphere Revisited

Given r = (x, y, z) with ∥r∥ = 1, the positive matrices

µ(0) := ρ(r) =
1

2

(
1 + z x− iy
x+ iy 1− z

)
and µ(1) := ρ(−r) = 1

2

(
1− z −x+ iy

−x− iy 1 + z

)
define a general qubit basis measurement. Performing this measurement on a quantum state
with Bloch vector s = (x′, y′, z′), then the probability of obtaining the outcome 0 is

p(0) =
1

2
+

1

2
(r · s) = 1

2
+

1

2
(xx′ + yy′ + zz′).

Geometrically r · s is the projection of the Bloch vector s of a quantum state onto the axis
defining the measurment.

1.6 Observables

Sometimes it is convenient to reformulate measurements in terms of observables. A projective
measurement is a measurement where all measurement operators are projections, that is, we
have a set of outcomes Ω and projections {Px : x ∈ Ω} such that

∑
x∈Ω Px = I. Suppose that

Ω ⊆ R. The observable associated to the projective measurment is an operator O ∈ Lin(H)
given by

O =
∑
x∈Ω

xPx.

Since x are real, O is Hermitain, and, conversely, each Hermitian operator O has a spectral
decomposition of this form, thereby defining a projective measurement.

Remark 1.20. In physics, observables are often the preferred way to reason about measurements.
Measuring the observable O is the same as performing the projective measurement defined by
the spectral decomposition of O.

Example 1.21. Since Z = |0⟩⟨0| − |1⟩⟨1|, the observable Z corresponds to measuring in the
Z-basis with outcomes {±1}. Similarly, since X = |+⟩⟨+| − |−⟩⟨−|, measuring X corresponds
to measuring in the X-basis with outcomes {±1}. More generally, we may measure a qubit in
the basis given by the antipodal points r = (x, y, z) and −r on the Bloch sphere with outcomes
{±1}. This gives an observable

O(r) = ρ(r)− ρ(−r) = 1

2

(
1 + z x− iy
x+ iy 1− z

)
− 1

2

(
1− z −x+ iy

−x− iy 1 + z

)
=

(
z x− iy

x+ iy −z

)
.

An observable provides a compact formula for the expectation value of the measurement
outcome. If O =

∑
x∈Ω xPx is an observable and ρ ∈ S(H), then

E(outcome) =
∑
x∈Ω

xP(outcome x) = tr[Oρ].

In case ρ = |ψ⟩⟨ψ|, then the right-hand hand side is equal to ⟨ψ|O|ψ⟩.
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1.7 Uncertainty Relation

Let |ψ⟩ be a pure state. Note that since X = |+⟩⟨+| − |−⟩⟨−|, we get the following:

|⟨ψ|X|ψ⟩| = |pX(1)− pX(−1)| = |2pX(1)− 1| = 2max{pX(1), pX(−1)} − 1,

where pX(x) denotes the probability of getting outcome x after measuring in the X-basis.
Clearly,

0 ≤ |⟨ψ|X|ψ⟩| ≤ 1.

The upper bound is attained precisely when either pX(1) = 1 or pX(−1) = 1, that is, when
the measurement outcome is certain. The lower bound is attained precisely when pX(1) =
pX(−1) = 1/2, which means that the measurement is completely uncertain. Thus, |⟨ψ|X|ψ⟩|
provides a meaningful way to quantify our uncertainty about the measurement outcome.

Using Z = |0⟩⟨0| − |1⟩⟨1|, we similarly obtain |⟨ψ|Z|ψ⟩| = 2max{pZ(1), pZ(−1)} − 1. Com-
bining the two, we get

|⟨ψ|X|ψ⟩|+ |⟨ψ|Z|ψ⟩| ≤ 2.

Note that by the previous discussion, the equality can never be attained. However, there is a
significant strenghtening:

Theorem 1.22 (Uncertainty relation for Pauli matrices). For every state |ψ⟩, we have

|⟨ψ|X|ψ⟩|+ |⟨ψ|Z|ψ⟩| ≤
√
2.

Proof. Let sX , sZ ∈ {±1} and let A = sXX + sZZ. We need to show that

sX⟨ψ|X|ψ⟩+ sZ⟨ψ|Z|ψ⟩ = ⟨ψ|A|ψ⟩ ≤
√
2.

Using Cauchy-Schwarz inequality, we get

⟨ψ|A|ψ⟩
CS
≤ ∥A|ψ⟩∥ ≤ ∥A∥,

where ∥A∥ = sup∥|ψ⟩∥=1 ∥A|ψ⟩∥ is the operator norm of A. Further,

A†A = A2 = (sXX + sZZ)(sXX + sZZ) = I + sXsZ(XZ + ZX) + I = 2I.

This calculation shows that A/
√
2 is unitary. Since the operator norm of a unitary is one, we

get

∥A∥ =
√
2
∥∥∥A/√2

∥∥∥ =
√
2.

We can interpret the quantity max{pX(1), pX(−1)} as the guessing probability pguess,X , that
is, the maximal probability of guessing the outcome of X-basis measurement on the state |ψ⟩
– the best option is to just guess the outcome with larger probability. Using this notation, we
can rewrite the uncertainty relation from Theorem 1.22 as follows:

|⟨ψ|X|ψ⟩|+ |⟨ψ|Z|ψ⟩| ≤
√
2

2max {pX(1), pX(−1)} − 1 + 2max {pZ(1), pZ(−1)} − 1 ≤
√
2

pguess,X + pguess,Z ≤ 1 +

√
2

2
.

So the uncertainty relation from Theorem 1.22 gives a bound on the sum of probabilities of
guessing the two measurement outcomes correctly.
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1.8 TODO

• simultaneously diagonalizable operators

• more about uncertainty principle
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Chapter 2

Multiple Quantum Systems

2.1 Multiple Systems

If we have classical random variables with outcome sets Σ1, . . . ,Σn, then their joint distribution
is a probability distribution on the product set

Σ1 × · · · × Σn = {(x1, . . . , xn) : xj ∈ Σj}.

So n bits are represented by an n-tuples.
Tensor product is precisely the quantum version of this. If we have bases Σ1, . . . ,Σn for the

Hilbert spaces H1, . . . ,Hn, then the Hilbert space

H1 ⊗ · · · ⊗ Hn

is the tensor product with basis

{|x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩ : |xj⟩ ∈ Σj}.

We will sometimes use the shorthand |x1⟩|x2⟩ · · · |xn⟩ or |x1 · · ·xn⟩. Clearly, we have dim(H1 ⊗
· · · ⊗ Hn) = dim(H1) · · · dim(Hn) since the basis elements are labelled by the elements of
Σ1 × · · · × Σn.

Axiom 4. If we have multiple quantum systems with Hilbert spaces H1, . . . ,Hn, then the joint
system has associated Hilbert space H1 ⊗ · · · ⊗ Hn.

Example 2.1. If we have two qubits, the joint Hilbert space is C2⊗C2, which is 4-dimensional
and has the standard basis |00⟩, |01⟩, |10⟩, |11⟩.

The Hilbert space of n qubits is (C2)⊗n, which is 2n-dimensional and has the standard basis
{|x1 · · ·xn⟩}x1,...,xn∈{0,1}.

Notation. We will often label different quantum systems by A,B,C, . . . and denote the associ-
ated Hilbert spaces asHA,HB,HC , . . . . The bases of these Hilbert spaces are usually denoted by
ΣA,ΣB,ΣC , . . . . We will also write Lin(A) = Lin(HA), S(A) = S(HA), PSD(A) = PSD(HA).
We also write for example AB instad of HA ⊗ HB. So, we may write ρAB ∈ S(AB) for a
quantum state shared by Alice and Bob and µA for a measurement on Alice’s quantum system.
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Tensor product of operators. If MA ∈ Lin(A) and NB ∈ Lin(AB), then MA ⊗ NB ∈
Lin(AB) is defined by extending the following formula by linearity:

(MA ⊗NB)|ψA⟩ ⊗ |ϕB⟩ = (MA|ψA⟩)⊗ (NB|ϕB⟩),

where |ψA⟩ =
∑

a ψa|a⟩, |ϕB⟩ =
∑

b ϕb|b⟩, and |ψA⟩|ψB⟩ =
∑

a,b ψaϕb|ab⟩.

Example 2.2. If MA = |a⟩⟨a′| and NB = |b⟩b′, then MA ⊗NB = |a⟩⟨a′| ⊗ |b⟩⟨b′| = |ab⟩⟨a′b′|.

Definition 2.3. Let A and B be quantum systems. States of the form ρ = ρA ⊗ ρB ∈ S(AB),
for ρA ∈ S(A) and ρB ∈ S(B) are called product states. A state, which is not a product state
is called correlated.

Note that the previous definition makes sense since the tensor product of positive operators
is positive and tr[MA ⊗NB] = tr[MA] tr[NB].

Example 2.4 (classical states). A joint probability distribution pXY ∈ P(XY ) associates a
probability pXY (x, y) to each pair (x, y) ∈ ΣX × ΣY . The classical state corresponding to XY
has the density matrix

ρXY =
∑
x,y

pXY (x, y)|x, y⟩⟨x, y| =
∑
x,y

pXY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y|.

Moreover, any classical joint state is of this form. The state ρXY is a product state if and only
if X and Y are indpendent under the probability distribution pXY . Thus, one can think of
product states as the quantum generalization of independence in probability theory. Most of
the quantum states are neither classical nor product states.

Example 2.5 (maximally correlated state). A classical state that is not a product state is for
example the maximally correlated state:

σAB =
1

2
(|00⟩⟨00|+ |11⟩⟨11|) = 1

2
(|0⟩⟨0| ⊗ |0⟩⟨0|+ |1⟩⟨1| ⊗ |1⟩⟨1|).

Writing this in the basis |00⟩, |01⟩, |10⟩, |11⟩ gives

σAB =
1

2


1

1

 .

Exercise 2.6. Let

ρA =
1

2

(
1 1
1 1

)
, ρB =

1

2

(
1 0
0 1

)
.

Express ρA ⊗ ρB in the standard basis |00⟩, |01⟩, |10⟩, |11⟩.

Solution.

ρA ⊗ ρB =
1

4

(
1ρB 1ρB
1ρB 1ρB

)
=

1

4


1 1

1 1
1 1

1 1

 .
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Example 2.7 (pure product states). If HA = HB = C2, then pure product states are for
example the basis states |00⟩, |01⟩, |10⟩ and |11⟩. Another example is the state |+⟩ ⊗ |+⟩.

We will use abbreviation |ψA⟩|ϕB⟩ = |ψA⟩ ⊗ |ϕB⟩ for pure states.

Example 2.8 (maximally entangled state). A state that is neither classical nor a product state
is the maximally entangled state:

|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

The density matrix is

ρAB = |Φ+
AB⟩⟨Φ

+
AB| =

1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|).

Writing this in the basis |00⟩, |01⟩, |10⟩, |11⟩ gives

ρAB =
1

2


1 1

1 1

 .

Recall that |xy⟩ = |x⟩ ⊗ |y⟩, so we can also write

ρAB =
1

2
(|0⟩⟨0| ⊗ |0⟩⟨0|+ |0⟩⟨1| ⊗ |0⟩⟨1|+ |1⟩⟨0| ⊗ |1⟩⟨0|+ |1⟩⟨1| ⊗ |1⟩⟨1|).

2.2 The Partial Trace

If Alice does a measurement µA : Ω → PSD(A), how to describe this on AB? Define

µA ⊗ IB := {µA ⊗ IB : x ∈ Ω}.

This is a measurement on the whole system since tensor products of positive operators are
positive and ∑

x∈Ω
µA(x)⊗ IB =

(∑
x∈Ω

µA(x)

)
⊗ IB) = IA ⊗ IB = IAB.

More generally, suppose that Alice and Bob have measurements µA : Ω1 → PSD(A) and
µB : Ω2 → PSD(B). This corresponds to a measurement on AB given by

µA ⊗ µB := {µA(x1)⊗ µB(x2) : (x1, x2) ∈ Ω1 × Ω2}.

The outcome probabilities for Alice do not depend on the choice of measurement for Bob.
Given a state ρAB ∈ S(AB), what is the state ρA of Alice? We would like

tr[µA(x)ρA] = tr[(µA(x)⊗ IB)ρAB],

12



for any measurement operator µA(x). We can proceed by computing the trace on the RHS. We
chose bases {|a⟩}a∈ΣA

and {|b⟩}b∈ΣB
of HA and HB, respectively, which gives the product basis

{|a⟩ ⊗ |b⟩} for HA ⊗HB. We can expand the RHS above

tr[(µA(x)⊗ IB)ρAB] =
∑
a∈ΣA
b∈ΣB

⟨ab|(µA(x)⊗ IB)ρAB|ab⟩ use |a⟩ ⊗ |b⟩ = (IA ⊗ |b⟩)|a⟩

=
∑
a,b

⟨a|(IA ⊗ ⟨b|)(µA(x)⊗ IB)ρAB(IA ⊗ |b⟩)|a⟩

=
∑
a,b

⟨a|µA(x)(IA ⊗ ⟨b|)ρAB(IA ⊗ |b⟩)|a⟩

=
∑
a

⟨a|µA(x)

(∑
b

(IA ⊗ ⟨b|)ρAB(IA ⊗ |b⟩)

)
|a⟩.

Finally, we define

ρA =
∑
b

(IA ⊗ ⟨b|)ρAB(IA ⊗ |b⟩).

Definition 2.9 (partial trace). Let A and B be systems with Hilbert spaces HA nad HB and
choose basis {|b⟩}b∈ΣB

for HB. Let MAB ∈ Lin(AB). Then the partial trace over B of MAB is

trB[MAB] =
∑
b

(IA ⊗ ⟨b|)MAB(IA ⊗ |b⟩).

For ρAB ∈ S(AB), we call ρA = trB[ρAB] ∈ S(A) the reduced state of ρAB on A.

If we choose a basis |a⟩ for HA, then the entries of the partial trace are given by

⟨a| trB[MAB]|a′⟩ = ⟨a|
∑
b

(IA ⊗ ⟨b|)MAB(IA ⊗ |b⟩)|a′⟩ =
∑
b

⟨ab|MAB|a′b⟩.

Further, we can write

MAB =
∑

a,a′∈ΣA

∑
b,b′∈ΣB

Mab,a′b′ |ab⟩⟨a′b′| =
∑

a,a′∈ΣA

∑
b,b′∈ΣB

Mab,a′b′ |a⟩⟨a′| ⊗ |b⟩⟨b′|.

The partial trace is then

trB[MAB] =
∑
a,a′,b

Mab,a′b|a⟩⟨a′| =
∑
a,a′

(∑
b

Mab,a′b

)
|a⟩⟨a′|.

For tensor product of operators MAB = NA ⊗OB, the partial trace is given by

trB[NA ⊗OB] = NA tr[OB] = tr[OB]NA.

This follows from the above since Mab,a′b′ = Na,a′Ob,b′ and
∑

bMab,a′b = Ma,a′ tr[OB]. Every
operator can be written as a linear combination of tensor product operators, so this formula is
sufficient to compute partial traces of arbitrary operators. Moreover, it shows that the notation
of the reduced state is compatible with the notation for product states: ρAB = ρA ⊗ ρB, then
ρA and ρB are reduced states of A and B, respectively.

13



Lemma 2.10 (properties of partial trace). (a) The map trB : Lin(AB) → Lin(A) is linear.

(b) For NA ∈ Lin(A) and MAB ∈ Lin(AB), we have tr[(NA ⊗ IB)MAB] = tr[NA trB[MAB]].

(c) The partial trace does not depend on the choice of basis ΣB.

(d) For MAB ∈ Lin(AB), we have tr[trB[MAB]] = tr[MAB].

(e) If PAB ∈ PSD(AB), then trB[PAB] ∈ PSD(A).

Proof. (a) The formula in the definition is linear in MAB.
(b) We can follow the same calculation that we used in the derivation of partial trace with

MAB instead of ρAB and NA instead of µA(x).
(c) Consider the formula in (b). Since LHS does not depend on the choice of basis, neither

does the right-hand side. From linear algebra, we know that tr[AX] = tr[BX] for allX ∈ Lin(H)
if and only if A = B. Since the equation in (b) holds for all NA, using the fact, trB[MAB] is
determined.

(d) Immedietelly from (b) by using NA = IA.
(e) By Theorem 1.4(d) it suffices to check that

tr[QA trB[PAB]] ≥ 0, for all QA ∈ PSD(A).

If QA ≥ 0, then QA ⊗ IB ≥ 0. So we can apply first (b) and then Theorem 1.4(d):

tr[QA trB[PAB]] = tr[(QA ⊗ IB)PAB] ≥ 0.

Example 2.11. Let |Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩) and ρAB = |Φ+

AB⟩⟨Φ
+
AB|. Then

ρA = trB[ρAB] = trB[
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

] =
1

2

(
1 0
0 1

)
.

This is the maximally mixed state. This also discribes the situation where Alice has a classical
bit equal to zero or one with equal probability. If Alice cannot communicate with Bob, she
cannot see the difference.

We have three sources of mixed states in the quantum formalism: probabilistic mixtures (we
receive ρx with probability p(x)), restricting to subsystem (even if |ψAB⟩ is pure, the reduced
state ρA can be mixed), measurement (if we perform measurement µ on ρ, we have some
probability distribution on Ω, which can be described by a classical state).

Example 2.12 (marginal distributions). For classical states, the partial trace reduces to
marginal distirbutions. Let

ρXY =
∑
x,y

pXY (x, y)|x, y⟩⟨x, y| =
∑
x,y

pXY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y|,

where pXY is a joint probability distribution on ΣX × ΣY . The reduced state

ρX = trY [ρXY ] =
∑
x

(∑
y

pXY (x, y)

)
|x⟩⟨x| =

∑
x

pX(x)|x⟩⟨x|,
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where pX is the marginal distribution of random variable X given by

pX(x) =
∑
y

pXY (x, y).

The two random variables X and Y are idependent, that is, pXY (x, y) = pX(x)pY (y), if and
only if ρXY is a product state, that is, ρXY = ρX ⊗ ρY .

Another important concept in classical probability is the notion of conditional probability.
In quantum information, there is no direct generalization of conditional probabilities for general
quantum states. We come to this when dealing with quantum entorpy later.

2.3 Purification

The situation when with probability p(x) we output a state ρx is described by the density matrix
ρA =

∑
x∈Ω p(x)ρx. However, given the density matrix, the interpretation can be non-unique.

Suppose now that we want to model a different situation, namely with probability p(x) we
output a state ρx, but now we also receive the value of x as well. This can be described by
introducing a reference system X with Hilbert space CΩ and taking the joint state

ρAX =
∑
x∈Ω

p(x)ρx ⊗ |x⟩⟨x|.

It is easy to check that trA[ρAX ] = ρA. Once we actually recive outcome x, the state must
be ρx (like in probability if we see outcome of die to be 6, then the die is in the state 6 with
probability 1). We may consider X to be side information. It turns out that it is usefull to have
quantum side information.

Definition 2.13. Given ρA ∈ S(HA), a purification of ρA is a pure state |ϕAR⟩ ∈ HA ⊗ HR

such that
trR[|ϕAR⟩⟨ϕAR|] = ρA.

The system R is called a reference or purifying system. We will refer to both |ϕAR⟩ and
ρAR = |ϕAR⟩⟨ϕAR| as purification of ρA.

Lemma 2.14. Every ρA ∈ S(A) has a purification. The dimension |R| of the purifying system
can be taken to be rank(ρA).

Proof. Let r = rank(ρA) and ρA =
∑r−1

j=0 pj |ej⟩⟨ej | be a spectral decomposition. Put HR = Cr
and

|ϕAR⟩ =
r−1∑
j=0

√
pj |ej⟩ ⊗ |j⟩.

Then

trR[|ϕAR⟩⟨ϕAR|] = trR

 r−1∑
j,k=0

√
pjpk|ej⟩⟨ek| ⊗ |j⟩⟨k|

 =

r−1∑
j

pj |ej⟩⟨ej | = ρA.
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The proof does notu seo orthogonality given by the spectral decomposition. So we may take
any decomposition ρA =

∑
j pj |ψj⟩⟨ψj | and take

∑
j
√
pj |ψj⟩⊗ |j⟩ as purification. This does not

give the optimal dimension of the reference system.

Exercise 2.15. Compute the purification of ρA = 1
3(|0⟩⟨0|+ |+⟩⟨+|+ |1⟩⟨1|).

Solution.

|ϕAR⟩ =
1√
3
(|0⟩|0⟩+ |+⟩|1⟩+ |1⟩|2⟩).

Lemma 2.16. If |ϕAR⟩ and |ϕAS⟩ are purifications of ρA and |R| ≤ |S|, then there is an
isometry VR→S ∈ Isom(R,S) such that

(IA ⊗ VR→S)|ϕAR⟩ = |ϕAS⟩.

In particular, when S = R, then the purificaton is unique up to a unitary.

Proof. Uses Schmidt decomposition.

2.4 Schmidt decomposition

A standard result in linear algebra is that every matrix has a singular value decomposition
(SVD). Let M ∈ Lin(H,K), there are bases {|ej⟩} and {|fj⟩} of K and H, respectively, and
s1 ≥ · · · ≥ sr > 0, the singular values of M , such that

M =
r∑
j=1

sj |ej⟩⟨fj |.

The number of singular values equals r = rank(M).
To find SVD, we can take M †M , which is positive. It has eigenvalues s2j . The eigenvectors

of M †M and MM † are the bases {|ej⟩} and {|fj⟩}.
We may interpret a pure state ψAB ∈ HA ⊗ HB as a linear map M ∈ Lin(H∗

A,HB) and
apply the singular value decomposition to M . This leads to the Schmidt decomposition.

Theorem 2.17 (Schmidt decomposition). Let |ψAB⟩ ∈ HA ⊗ HB be a pure quantum state.
Then there are bases {|ej⟩} and {|fj⟩} of HA and HB, and positive number s1 ≥ · · · ≥ sr > 0,
where r ≤ min(|A|, |B|), such that

∑
j s

2
j = 1 and

|ψAB⟩ =
r∑
j=1

sj |ej⟩ ⊗ |fj⟩.

The numbers s1, . . . , sr are called Schmidt coefficients and r is calleed the Schmidt rank.

Proof. Let {|a⟩} and {|b⟩} be arbitrary basis for HA and HB, respectively. Let M be the
|A| × |B|-matrix defined by Mab = ⟨ab|ψAB⟩. We apply SVD to M and get

M =

r∑
j=1

sj |ej⟩⟨fj |.
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Thus,

Mab = ⟨a|M |b⟩ =
r∑
j=1

sj⟨a|ej⟩⟨gj |b⟩

=
r∑
j=1

sj⟨a|ej⟩⟨b|gj⟩

=
r∑
j=1

sj⟨a|ej⟩⟨b|fj⟩,

here |fj⟩ denotes the vectors whose entries with respect to the basis {|b⟩} are the complex

conjugate of the entries of |gj⟩, i.e., ⟨b|fj⟩ = ⟨b|gj⟩ = ⟨gj |b⟩, for all b. Note that {|fj⟩} is also an
orthonormal basis. We have

|ψAB⟩ =
∑
a,b

Mab|a⟩ ⊗ |b⟩

=
∑
a,b

r∑
j=1

sj⟨a|ej⟩⟨b|fj⟩|a⟩ ⊗ |b⟩

=
r∑
j=1

∑
a,b

sj |a⟩⟨a|ej⟩ ⊗ |b⟩⟨b|fj⟩

=

r∑
j=1

sj |ej⟩ ⊗ |fj⟩.

The state is normalized, so
∑

j s
2
j = 1.

Exercise 2.18. Compute the Schmidt decomposition of

|ψAB⟩ =
1√
10


1
1
2
−2

 .

Solution. To do it systematically, reorganize the vector into the matrix M , e.g., we take |01⟩ to
|0⟩⟨1|. We get

M =
1√
10

(
1 1
2 2

)
.

Then we compute the SVD.
To get the left singular vectors, we take

MM † =

(
1/5 0
0 4/5

)
.

The eigenvalues of MM † are 1/5 and 4/5, so the Schmidt coefficients are

s1 =
1√
5

and s2 =
2√
5
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and the eigenvectors are just the computational basis |0⟩ and |1⟩.
To get the right singular vectors, we take

M †M =

(
1/2 −3/10

−3/10 1/2

)
.

We have eigenvalue 1/5 with eigenvector

(
1
1

)
and 4/5 with eigenvector

(
1
−1

)
. After normal-

ization, we get the right singular vectors |+⟩ and |−⟩. Finally, we get

|ψAB⟩ =
1√
5
|0⟩ ⊗ |+⟩+ 2√

5
|1⟩ ⊗ |−⟩.

Lemma 2.19. If |ϕAB⟩ is a pure state with Schmidt decomposition

|ϕAB⟩ =
r∑
i=1

si|ei⟩ ⊗ |fi⟩,

then the reduced density matrices are given by

ρA =
r∑
i=1

s2i |ei⟩⟨ei|, and ρB =
r∑
i=1

s2i |fi⟩⟨fi|.

In particular, Schmidt rank and Schmidt coefficients are uniquely determined by the rank and
the non-zero eigenvalues of the reduced states, respectively.

Proof. We compute

ρA = trB[|ψAB⟩⟨ψAB|] = trB

 r∑
j,k=1

sjsk|ej⟩⟨ek| ⊗ |fi⟩⟨fk|

 =
r∑
j=1

s2j |ej⟩⟨ej |.

Similarly for ρB.

Corollary 2.20. A pure state |ϕAB⟩ with density matrix ρAB is a product state if and only if
ρA is pure if and only if ρB is pure.

2.5 Entanglement

Two random variables X and Y are independent if the corresponding classical state is a product
state ρXY = ρX ⊗ ρY . If X and Y are not independent, the are correlated. For instance the
maximally correlated state on two qubits

ρXY =
1

2
(|00⟩⟨00|+ |11⟩⟨11|).

Non-classical correlations, so-called entanglement, creates fundamental difference between clas-
sical and quantum information theory.
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Definition 2.21. A pure state |ψAB⟩ ∈ HAB is called entangled if it is not a product state,
i.e., there are no |ψA⟩ and |ψB⟩ such that |ψAB⟩ = |ψA⟩ ⊗ |ψB⟩.

The following lemma follows directly from Theorem 2.20.

Lemma 2.22. A pure state ρAB = |ψAB⟩⟨ψAB| is entangled if and only if the reduced density
matrix ρA (or ρB) is not pure.

Definition 2.23. A state ρAB ∈ S(AB) is maximally entangled state if ρAB is pure and both
reduced states are maximally mixed, i.e., ρA = 1

|A|IA and ρB = 1
|B|IB.

The pervious lemma implies that maximally entangled states are indeed entangled since their
reduced states are maximally mixed. We are not going to make this precise at this moment,
but the “more mixed” the reduced states are, the “more entangled” the state is. We will come
back to this later.

By Schmidt decomposition a pure state is maximally entangled if and only if its Schmidt
rank is d and its Schmidt coefficients are all equal to 1/

√
d, where |A| = |B| = d. In particualr

maximally entangled states exists if and only if |A| = |B|, and they are of the form

|Φ+
AB⟩ =

1√
d

d∑
j=1

|ej⟩ ⊗ |fj⟩ ∈ HA ⊗HB.

For example using the standard basis for both, we get

|Φ+
AB⟩ =

1√
d

d−1∑
i=0

|ii⟩ ∈ Cd ⊗ Cd.

Lemma 2.24 (properties of maximally entangled states). Let |Φ+
AB⟩ be the maximally entangled

state and let ρAB be its density matrix.

(a) The reduced density matrices are maximally mixed: ρA = 1
dIA.

(b) For any d× d matrix M , we have (MA ⊗ IB)|Φ+
AB⟩ = (IA ⊗MT

B )|Φ
+
AB⟩.

(c) For two d × d matrices M and N , we have ⟨Φ+
AB|MA ⊗ NB|Φ+

AB⟩ = 1
d tr[M

TN ] =
1
d tr[MNT ].

When HA = HB = Cd and we use the standard basis, then the notation is clear. In general,
the operators MA, M

T
B , etc., are defined with respect to the same basis as those obtained in the

Schmidt decomposition.

Exercise 2.25. Show that 1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ |−−⟩).

Solution. Use Theorem 2.24(b). We have (U ⊗ U)|Φ+
AB⟩ = |Φ+

AB⟩. Now just apply the unitary

U = H =
1√
2

(
1 1
1 −1

)
.
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If we have classical state on systems X and Y , it is of the form

ρXY =
∑
x,y

pXY (x, y)|x⟩⟨x| ⊗ |y⟩⟨y|.

It is a convex combination of the state |x⟩⟨x| ⊗ |y⟩⟨y|. The next definition capters wider class of
states where correlations between A and B are of classical nature and defines entanglement as
its complement.

Definition 2.26. A state ρAB ∈ S(AB) is separable if there is a collection of states ρA,x ∈ S(A),
ρB,x ∈ S(B), for x ∈ Ω, and a probability distribution p on Ω, for soem set Ω, such that

ρAB =
∑
x∈Ω

p(x)ρA,x ⊗ ρB,x.

A state is called entangled if it is not separable.

Clearly classical states are separable. If a state is entangled, there is no choice of basis for A
and B such that the state is classical in that basis. We can interpret separable states as follows:
(1) Alice and Bob generate some shared classical random variable with outcome x ∈ Ω. (2)
Based on the outcome, Alice prepares ρA,x and Bob prepares ρB,x. Thus, spearable states form
a class of states where the correlations between Alice and Bob are of classical nature.

The definition of entanglement for pure states is consistent with the latter definition. Indeed,
a pure product state is separable, and conversely we know that if a pure state is a convex
combination of product states, then it must be product state itself. Also, if |ψAB⟩⟨ψAB| =
ρA ⊗ ρB, then ρA and ρB must be pure since 1 = rank(ρAB) = rank(ρA) rank(ρB).

2.6 TODO

• revise the proof Schmidt decomposition

• prove Theorem 2.16

• the no-communication theorem

• add problem about tensor product of observables
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Chapter 3

Non-local games

Non-local games provide a mathematical framework to study the power of entanglement.

3.1 Basic definitions

Definition 3.1. A non-local game is a 6-tuple G = (IA, IB, OA, OB, π, V ), where IA and IB are
finite sets of questions, OA and OB are finite sets of answers, π is a probability distribution on
IA × IB, and V : OA ×OB × IA × IB → {0, 1} is a winning predicate.

The game is played as follows: the referee selects a pair of questions (x, y) ∈ IA × IB
according to π and sends x to Alice and y to Bob. Alice responds with a ∈ OA and Bob with
b ∈ OB. The players win if V (a, b, x, y) = 1. The players can agree on a strategy before the
game starts, but cannot communicate afterwards.

Definition 3.2. th Given a non-local game G = (IA, IB, OA, OA, π, V ), a strategy is an element
p = (p(a, b|x, y))a,b,x,y ∈ [0, 1]OA×OB×IA×IB such that for each (x, y) ∈ IA × IB, we have∑

(a,b)∈OA×OB

p(a, b|x, y) = 1.

Given a strategy S for the game G, the succes probability is defined as

ω(G, S) =
∑
x,y

π(x, y)
∑
a,b

V (a, b, x, y)p(a, b|x, y).

We say that a strategy S is perfect if ω(G, S) = 1. For a fixed collection of possible strategies
S, then we define the associated value of G by

ω(G,S) = sup
S∈S

ω(G, S).

Definition 3.3. A deterministic strategy for a non-local game G = (IA, IB, OA, OA, π, V ) is
given by a pair of functions f : IA → OA and g : IB → OB.

Definition 3.4. A strategy p for a non-local game G is called classical/randomized if there exists
a probability space (Ω, µ) and for all a, x and b, y measurable functions pA(a|x, ·), pB(b|y, ·) : Ω →
[0, 1] such that for all x, y, ω, ∑

a

pA(a|x, ω) =
∑
b

pB(b|y, ω) = 1,
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and

p(a, b|x, y) =
∫
ω
pA(a|x, ω)pB(b|y, ω)dµ(w).

The classical value of a non-local game G is denoted by ωc(G).

Proposition 3.5. If G is a non-local game, then ωc(G) is attained by a deterministic strategy.

Definition 3.6. A strategy p for a game G is non-signalling if every for every a, b, x, x′, y, y′ it
holds ∑

a

p(a, b|x, y) =
∑
a

p(a, b|x′, y), and
∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′).

Definition 3.7. In a (finite-dimensional) quantum strategy Alice and Bob share a quantum
state ρAB ∈ S(HA ⊗HB), and their answers are the result of a measurement on their system.
For each x ∈ IA, there is a measurement µxA : OA → PSD(HA) on Alice’s system and Alice
answers the outcome of the measurement. Similalry, for each y ∈ IB, Bob has measurement
µyB : OB → PSD(HB) and answers the outcome of his measurement. This means that Alice and
Bob answer a and b, when asked x and y, with probability

p(a, b|x, y) = tr
[
(µxA(a)⊗ µyB(b))ρAB

]
.

The quantum value of a game G is denoted by ωq(G).

3.2 CHSH game

The Clauser-Horne-Shimony-Holt (CHSH) game has IA = IB = OA = OB = {0, 1}. The
winning predicate is given by

x · y = (a+ b) mod 2 ⇐⇒ x ∧ y = a⊕ b.

The probability distribution π is just the uniform distribution on {0, 1}2.

Classical strategy. We first consider classical strategies. Suppose that there exist a deter-
ministic strategy, given by functions f, g : {0, 1} → {0, 1} such that a = f(x) and b = f(y), that
wins for all pairs of questions. The winning condition implies that∑

x,y∈{0,1}

f(x) + g(y) mod 2 =
∑

x,y∈{0,1}

x · y = 1.

On the other hand, ∑
x,y∈{0,1}

f(x) + g(y) = 2
∑

x∈{0,1}

f(x) + 2
∑

y∈{0,1}

g(y),

which is even. Thus, ωc(G) ≤ 3/4. There is a deterministic strategy that achives this value,
e.g., always answer a = b = 0. Therefore ωc(G) = 3/4.
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Quantum strategy. We will use observables with outcomes ±1 corresponding to answers a
and b as (−1)a and (−1)b. We encode Alice’s projective measurement with operators µxA(a) = P xa
corresponding to the question x by the observable Ax = P x0 − P x1 . Similarly, we encode Bob’s
projective measurement with operators µxB(b) = Qyb corresponding to the question y by the
observable By = Qy0 −Qy1.

A quantum strategy is determined by a state ρAB = |ψ⟩⟨ψ|, Alice’s obserables
{
A0, A1

}
,

and Bob’s observables
{
B0, B1

}
. The probabilty that Alice and Bob give the same answer to

x and y minus the probability that hey give different answers is given by

P(a ̸= b)− P(a = b) = ⟨ψ|Ax ⊗By|ψ⟩.

Further,

β := 2P(win)− 1 = P(win)− P(lose) =
1

4
⟨ψ|A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1|ψ⟩.

The quantity β is called the bias of the strategy.
Consider the states

|ψ0(θ)⟩ = cos θ|0⟩+ sin θ|1⟩, |ψ0(θ)⟩ = − sin θ|0⟩+ cos θ|1⟩.

Clearly these form an orthonormal basis. The corresponding vectors on the Bloch sphere are
r⃗θ = (sin 2θ, 0, cos 2θ) and −r⃗θ, respectively. The corresponding observable is

Oθ(r⃗) = ρ(r⃗)− ρ(−r⃗) =
(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
.

With the notation in place, we are ready to choose a strategy. As a quantum state, we pick
the maximally entangled state |ψ⟩ := |Φ+

AB⟩ = 1√
2
(|00⟩ + |11⟩). The Alice’s measurement is

given by the observables

A0 = O0 =

(
1 0
0 −1

)
= Z, A1 = Oπ

4
=

(
0 1
1 0

)
= X.

Bob’s measurement is the basis measurement corresponding to r⃗ = 1√
2
(1, 0, 1), for y = 0, and

s⃗ = 1√
2
(−1, 0, 1), for y = 1. This corresponds to the measurement in the bases{

cos(
π

8
)|0⟩+ sin(

π

8
)|1⟩,− sin(

π

8
)|0⟩+ cos(

π

8
)|1⟩
}
, for y = 0,{

cos(−π
8
)|0⟩+ sin(−π

8
)|1⟩,− sin(

π

8
)|0⟩+ cos(−π

8
)|1⟩
}
, for y = 1.

In terms of observables, we have

B0 = Oπ
8
=

1√
2

(
1 1
1 −1

)
=
Z +X√

2
, B1 = O−π

8
=

1√
2

(
1 −1
−1 −1

)
=
Z −X√

2
.

We have r⃗ = (x, y, z) and s⃗ = (x′, y′, z′) in the Bloch sphere. Recall that

O(r⃗) =

(
z x− iy

x+ iy −z

)
.
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If |ψ⟩ = 1√
2
(|00⟩+ |11⟩), by Theorem 2.24(c), we get

⟨ψ|O(r⃗)⊗O(s⃗)|ψ⟩ = 1

2
tr[O(r⃗)TO(s⃗)].

By directly computing this, trace, we get ⟨ψ|O(r⃗) ⊗ O(s⃗)|ψ⟩ = xx′ − yy′ + zz. We use this to
calculate β. Note that

β =
1

4
⟨ψ|O0 ⊗Oπ/8 +O0 ⊗O−π/8 +Oπ/4 ⊗Oπ/8 −Oπ/4 ⊗O−π/8|ψ⟩

=
1

4

(
(0− 0 +

1√
2
) + (0− 0 +

1√
2
) + (

1√
2
− 0 + 0)− (− 1√

2
+ 0− 0)

)
=

1√
2
.

From this, we Immedietelly get P(win) = 1
2 + 1

2
√
2
= cos2(π/8) ≈ 0.85. We have proven the

following theorem.

Theorem 3.8. If G is the CHSH game, then

ωq(G) ≥
1

2
+

1

2
√
2
> ωc(G).

The following Tsirelson bound shows that in fact we cannot do better.

Theorem 3.9 (Tsirelson bound). Let G be the CHSH game. Then

ωq(G) =
1

2
+

1

2
√
2
.

Proof. It remains to prove the upper bound. The key is that the bias β, defined above, is derived
for an arbitrary quantum strategy. Let |ψAB⟩ be the shared quantum state, which we assume
to be pure and the measurements to be projective (we will later see that this is possible).

When we construct the observables Ax and By from a projective two-outcome measurement,
we see that Ax and By are Hermitian with eigenvalues ±1. Consequently (Ax)2 = IA and
(By)2 = IB. Let

MAB = A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1

We have
4β = ⟨ψAB|MAB|ψAB⟩.

Using CS-inequality, we get

|⟨ψAB|MAB|ψAB⟩| ≤
√
⟨ψAB|MABM

†
AB|ψAB⟩

√
⟨ψAB|ψAB⟩

=
√
⟨ψAB|M2

AB|ψAB⟩

24



since MAB is Hermitian and |ψAB⟩ is normalized. We will now bound the right-hand side. To
that end, we rewrite

M2
AB =

(
A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

)2
=
(
A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

) (
A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

)
= (A0)2 ⊗ (B0 +B1)2 + (A1)2 ⊗ (B0 −B1)2

+A0A1 ⊗ (B0 +B1)(B0 −B1) +A1A0 ⊗ (B0 −B1)(B0 +B1)

= I2A ⊗ 4IB − [A0, A1]⊗ [B0, B1].

Note that, in general, for hermitian matrices M and N with M2 = N2 = I, we have by
triangle inequality and submultiplicativity

∥[M,N ]∥ = ∥MN −NM∥ ≤ ∥MN∥+ ∥NM∥ ≤ 2∥M∥∥N∥ = 2.

Now, using the CS-inequality, we get

|⟨ψAB|[A0, A1]⊗ [B0, B1]|ψAB⟩| ≤
∥∥[A0, A1]⊗ [B0, B1]|ψAB⟩

∥∥∥|ψAB⟩∥
≤
∥∥[A0, A1]⊗ [B0, B1]

∥∥∥|ψAB⟩∥∥|ψAB⟩∥
=
∥∥[A0, A1]

∥∥∥∥[B0, B1]
∥∥ ≤ 4.

So, ⟨ψAB|M2
AB|ψAB⟩ ≤ 8 and we get

4β = ⟨ψAB|MAB|ψAB⟩ ≤
√
8 = 2

√
2 =⇒ ωq(G) ≤

1

2
+

1

2
√
2
.

3.3 Mermin-Peris magic square game

Consider the magic square given in the Fig. 3.1 on the left. Each variable can be assigned values
in {±1}. We have six equations: each row and column corresponds to an equation xixjxk = b.
So we have six Boolean linear equations.

The corresponding non-local game is defined as follows. The sets of questions are X =
Y = {1, 2, 3}. For a pair of quesitons (x, y) ∈ X × Y , Alice and Bob must respond with
a = (a1, a2, a3), b = (b1, b2, b3) ∈ {−1, 1}3, respectively. Alice and Bob win the game if the
following three conditions are satisfied:

a1 · a2 · a3 = rx, b1 · b2 · b3 = cy, ax = by.

In other words, their answers could form a part of the solution to the system of linear equations.

Classical strategy. First note that if there is a solution, then Alice and Bob can just agree
beforehand, defining a deterministic strategy. On the other hand if ω(G) = 1, then there must
be a deterministc strategy attaining this value. After Alice and Bob receive questions (x, y),
then they must agree on the value of the (x, y) element, by the winning condition ax = by.
Doing this for every (x, y), we see that the strategy fixes a specific filling of the magic square
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x1 x2 x3 +1

x4 x5 x6 +1

x7 x8 x9 +1

+1 +1 −1

Z ⊗ I I ⊗ Z Z ⊗ Z +I

I ⊗X X ⊗ I X ⊗X +I

Z ⊗X X ⊗ Z Y ⊗ Y +I

+I +I −I

Figure 3.1: The Mermin-Peris magic square on the left. A 4-dimensional operator solution on
the right.

which Alice and Bob are both using. Moreover, the other winning conditions require this filling
to be a solution.

However, the system clearly has no solution. Indeed, suppose we have a solution such that
the row products are all 1, the first two column products are 1 and the third column prodcut
is −1. We get contradiction by taking all row products and obtaining 1, and taking all column
products and obtaining −1.

Quantum strategy. To obtain a quantum strategy, we will make use of the operator solution
given in Fig. 3.1 on the right. Each element of the operator solution is a tensor product of Pauli
matrices on C2 ⊗ C2. It is easy to see that each operator squares to the identity, operators
in each row and each column pairwise commute, the product of each row and of the first two
columns is the identity, and the product of the third column is the minus identity. In particular,
the operators in each column and each row can be simultaneously diagonalized.

Alice and Bob share the following entangled state in (HA1 ⊗HB1)⊗ (HA2 ⊗HB2):

|ψ⟩ = 1√
2
(|0⟩A1 ⊗ |0⟩B1 + |1⟩A1 ⊗ |1⟩B1)⊗

1√
2
(|0⟩A2 ⊗ |0⟩B2 + |1⟩A2 ⊗ |1⟩B2). (3.3.1)

We can use the Schmidt decomposition to check that |ψ⟩ is in fact an entangled state. By
multiplying and reordering the factors of the tensor product, we get

1

2
(|00⟩A|00⟩B + |01⟩A|01⟩B + |10⟩A|10⟩B + |11⟩A|11⟩B), (3.3.2)

which is already a Schmidt decomposition with all si = 1/2 and the standard bases. By
Theorem 2.19, we have

ρA =
1

4
(|00⟩A + |01⟩A + |10⟩A + |11⟩A),

which is not pure. So by Theorem 2.22 it is entangled.
Upon receiving questions from the referee, Alice and Bob each measure their two quibits

with the operator from the corresponding row or column in the magic square to determine their
outputs. For example, if Alice receives x = 3, she measures Z ⊗X, X ⊗Z, Y ⊗Y , and answers
(a1, a2, a3) according to the outcomes. From the properties of the operators we discussed above
it directly follows that their answers will satisfy the corresponding equations.
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It remains to argue that their answers will agree on the common entry. We can check this
individually, for example, consider the entry Z ⊗X. Using the equations

Z|0⟩ = +1|0⟩, Z|1⟩ = −|1⟩, X|0⟩ = |1⟩, X|1⟩ = |0⟩,

and the Eq. (3.3.2), we can conclude that

(Z ⊗X)A ⊗ (Z ⊗X)B|ψ⟩ = |ψ⟩.

Another way to see this is to rearrange (Z ⊗X)⊗ (Z ⊗X) to (ZA1 ⊗ ZB1)⊗ (XA1 ⊗XA2) ans
use the fact that for maximally entangled state |Φ+

AB⟩, we have

|Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ |−−⟩) = 1√

2
(|i, i⟩+ |−i,−i⟩).

Then we can deduce this from Eq. (3.3.1).
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Appendix A

Tensor Product
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