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Abstract

These are lecture notes for the course NMMB537 Quantum Information Theory, taught at Fac-
ulty of Mathematics and Physics, Charles University. The lecture notes are mostly inspired by
the course NMAK14020U Quantum Information Theory, offered at University of Copenhagen.
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Chapter 1

Quantum States and Measurements

We start by describing a precise mathematical framework for quantum states.

1.1 Finite-dimensional Hilbert Spaces

Axiom 1 (Hilbert space). To every quantum system we asocciate a Hilbert space H.

We only consider finite-dimensional Hilbert spaces in this course. If dim(H) = d, then H is
isomorphic to

Y1
Ccd = c i ec
(0¥}

with the standard inner product

d
(Wlo) = Picsi.
i=1

Bra-ket notation. We write |[¢)) € H for any vector. By (1| € H, we mean the linear map
H — C defined by (|(|¢p)) = (¥|¢). In other words, (1| is the row vector corresponding to the
conjugate transpose of |¢)). We denote the standard basis of C? by |0),[1),...,|d). That is, |i)
has 1 on the i'" coordinate and 0 elsewhere.

Linear algebra notation. FEvery basis that we will consider will be orthogonal. If there is
no confusion, we will use the terms linear map and matrix interchangeably.

By Lin(#, K), we denote the set of linear maps H — K. When we fix the standard bases,
we can express M € Lin(#H, K) as

M =" Myli)l.
0]
Note that (i|M|j) = M;; € C.

Exercise 1.1. Write >, ;. g1y 4j[)(j| as a matrix.



If M € Lin(H,H) = Lin(#H), then the trace with respect to the standard basis is

tr[M] = ZM = (il M]i).

)

An important fact about trace is that it is in fact independent of the basis. Recall also that
tr[M N] = tr[NM].

Here are some important types of matrices:

e M ¢ Lin(H) is Hermitian if Mt = M.

P € Lin(H) is positive if (p|P|yp) > 0, for all o)) € H. PSD(H) is the class of all positive
matrices. We also use the notation P > 0 to indicate that P is positive. If M, N € Lin(H),
then we define M > N if M — N > 0, that is, if M — N is positive.

U € Lin(H) is unitary if UTU = UUT = I. U(H) is the class of all unitary matrices.
V € Lin(H, K) is an isometry if VIV = I.
P € Lin(H) is a projection if Pt = P and P? = P.

Exercise 1.2. Are the following matrices {Hermitian, PSD, unitary, projections}?

1 0 1 0y 1/11 12 et 0
0 -1/ \o o))" 2\1 1) \3 4)" \o i)

Theorem 1.3 (Spectral theorem for Hermitian matrices). If M € Lin(H) is Hermitian d x d
matriz, then M has eigenvalues A\ > Ao > - -+ > \g and there is a basis of eigenvectors {’1/%')}?:1
such that

d
M =" Xlw)ail.
=1

Recall that the eigenvalues can have multiple occurences and the basis of eigenvectors may
not be unique. Indeed, for instance,

d
I=""[i)wil
i=1

. : d
is true for any basis {|¢;)};_;.
This allows us to define functions of Hermitian matrices. If f: R — R is a function, then

we can define
d

FOM) =" F () |idabil.

i=1

For instance,
d
VM = Z VX,
i=1

Note that if P is a projection, then the condition P? = P implies that the eigenvalues are
in {0,1}. Thus, we can write P =Y, [¢;)(¢;|. Here, r = rank(P) of the projection P.



Theorem 1.4 (Characterization of positive matrices). If P € Lin(H), then the following are
equivalent:

(a) P is positive, i.e., (}|Pl) >0, for all |¢p) € H.

(b) Pt = P and all eigenvalues are nonnegative.

(¢c) There is M € Lin(H,K) such that P = MTM.

(d) tr[PQ] > 0, for every Q € PSD(H).
Exercise 1.5. Prove that if P € PSD(#) and M € Lin(#, K), then M PMT is positive.

1.2 Quantum States

Definition 1.6. A density matriz is a positive operator p € PSD(H) with tr[p] = 1. We put
S(H) = {p € PSD(H) : tr[p] = 1}.

Axiom 2. The state of a quantum system with Hilbert space H is described by a density matrix
p. We will refer to p as a quantum state.

Example 1.7 (classical states). In probability theory we have a finite set of outcomes ¥ with
a probability distribution p such that p(z) > 0, for x € ¥, and )5, p(x) = 1. If H has a basis

{l2)} e, then
p=> |a)zl
TEL
is a density matrix. Conversely, any diagonal density matrix corresponds to a probability
distribution. O

Example 1.8 (pure states). Let |¢)) € H be a unit vector. Then p = [1))(¢] is a density matrix
since tr{|)]] = tr[(¢|¢)] = 1. If [¢) = a|0) + B|1), then

_ (laf? 015)
ol = (125 o0).
Note that replacing 1) by €?|¢)) does not change the density matrix. O
Exercise 1.9. Is p = % (i 1) a pure state?
Solution. Yes, since p = |+)(+|, where |4) = %UO} +11)). O

Example 1.10 (general state). Let p be a general quantum state. By Theorem we can
write

d
p=>_ pilifeil,

i=1
where p; > 0. Since p is diagonal in the basis {]1/%)}?21 and trace is independent of the
chosen basis, tr[p] = 1 implies that Zle p; = 1. So, the eigenvalues p;’s define a probability
distribution. We may interpret p as if we have the pure state |1;)1);| with probability p;. We

call p a mized state if it is not pure.

However, note that the decomposition of p given above is not unique. It is possible that p
may be written as a sum over some different probabilities and different states, even different

number of states. O



Exercise 1.11. What is the state corresponding to 50% chance of |0) and 50% chance of |+)?

1 1 C1/1 0\ 1/1 1\ (3/4 1/4
p= 0001+ 31+ =5 <0 0) 1 <1 1) - (1/4 1/4) '
Note that the eigenvalues of p are 1/2 ++/5/4 and 1/2 — v/5/4, so the spectral decomposition
of p gives a completely different decomposition of p compared to the one we started with. [

Solution.

Definition 1.12. The state 7 = %1 is called the mazimally mized state.

1.3 Bloch Sphere

How does the set S(H) look like? For two states p1,pa € S(H) and t € [0,1], the convex
combination tp; + (1 — t)p2 is also a state. In fact, we have the following lemma.

Lemma 1.13. The set S(H) C Lin(H) is convex. Moreoever, the extreme points of S(H) are
exactly the pure states.

For the particular case of one qubit, there is a visualization known as the Bloch sphere.
Hermitian 2 x 2 matrices have the following (real) basis:

O I Vi E e (O S (I

The last three matrices are known as Pauli matrices. Here are some of their properties:
X2=Y*=2°=1, XY =iZ=-YX, tr[X]=tr[Y]=1tr[Z]=0.

In particular, Pauli matrices are unitary and have eigenvalues +1.

Every 2 x 2 Hermitian matrix can be written in a unique way as a linear combination of
the matrices I, X,Y, Z with all coefficients being real numbers. An arbitrary 2 x 2 Hermitian
matrix p with tr[p] = 1 can be expressed as

1 1142z xz—1y
p—2(I+xX+yY+zZ)—2<w+Z,y 1—z>' (1.3.1)
The coefficient 1/2 in front of the I is fixed by the condition tr[p] = 1. Further, tr[p] = 1 implies
that the eigenvalues of p are A and 1 — A, for some A € R. If we want p to be a quantum state,
it also has to be positive, which is equivalent to requiring that A > 0 and 1 — A > 0. Now, A
and 1 — A are nonnegative if and only if det(p) = A(1 — A) > 0. We compute

det(p) = 3((1+2)(1—2) — (o i) @ — i9)) = 1(1—a? — >~ 2%).

If we let r = (x,9,2) € R3, then p > 0 if and only if ||r|| < 1. If p is a pure state, then
rank(p) = 1 and det(p) = 0, which is equivalent to ||r|| = 1. Thus, pure states correspond
exactly to the unit sphere in R? and mixed states correspond to the open unit ball.

Exercise 1.14. What is the pure state [¢)) and its density matrix [¢)})| corresnponding to
r1 = (0,1,0) and to rp = (0,—1,0).



Solution. By plugging r into Eq. (1.3.1]), we get

11—

=5\ 1)
We can easily calculate, that the eigenvector corresnponding to the eigenvalue 1 of p; is |¢1) =
%(|0> + ¢|1)). By Theorem we get p1 = [1)(¥1]. Similarly, we get that pa = |12)(1)a],
where [¢2) = %(|0> —i|1)). O

We have the following important bases of pure states that correspond to the intersection
points of z,y, z-axes with the Bloch sphere:

o Z-basis: {|0), (1)}, = (0,0,1), —r = (0,0, —1).
o X-basis: {|+),|-)}, r = (1,0,0), —r = (—1,0,0)
e Y-basis: {|+1),|—i)}, r=(0,1,0), —r = (0,—1,0).

1.4 Measurements

Definition 1.15. A measurement or a positive operator valued measure (POVM) on a Hilbert
space H with a finite set of outcomes € is a function p: @ — PSD(#) such that ), p(x) = 1.
If p(z) are projections, then the measurement is called projective.

Axiom 3. If we measure a state p using u, then the probability of getting an outcome x € €
is p(x) = tr[u(z)p].

Remark 1.16. In general in quantum mechanics, it is not possible to perform measurements on
a state without changing it. However, for now, we will not consider what happens with a state

after the measurement (we can think that it is destroyed). We only get classical information
about which outcome occured. We will discuss post-measurement states later in the course.

Exercise 1.17. Prove that if p is a quantum state and p is a measurement, then p(x) = tr[u(x)p]
defines a probability distribution on €.

Solution. By Theorem [1.4]d), we have tr[u(x)p] > 0 since both p(z) and p are positive. By the
linearity of trace,

> wrlu(@)p) = > plw)p] = trlIp] = 1.

z€e) €

O
Example 1.18 (basis measurement). Let {Wi>}?:1 be an orthonormal basis and let u(i) =
|1;}(1);| be the projection onto |¢;). We get

p(2) = tr[[ga)eilp] = tr[(Wilplvi)] = (Wil pldi)-
In particular, if p = |¢)}¢| is a pure state, then we get
p(i) = (WilloXollwi) = (il o).

O
Exercise 1.19. What are the outcome probabilities when we measure |0) the X-basis?
Solution. We get |+) with probability |[(+|0)|> = 1/2 and |—) with probability |(—|0)|> =
1/2. 0



1.5 Bloch Sphere Revisited

Given r = (x,y, z) with ||r|| = 1, the positive matrices
o 1 (1+2z z—ay . 11—z —xz+iy
M(O>'_p(r)_2<x+iy 1—z> and M(l)'_p<_r)_2<—x—iy 1+2z

define a general qubit basis measurement. Performing this measurement on a quantum state
with Bloch vector s = (2,9, 2"), then the probability of obtaining the outcome 0 is
1 1 1 1
p(0) = 5T 5(7“ 's) = 5T 5(9090/ +yy +27).
Geometrically 7 - s is the projection of the Bloch vector s of a quantum state onto the axis
defining the measurment.

1.6 Observables

Sometimes it is convenient to reformulate measurements in terms of observables. A projective
measurement is a measurement where all measurement operators are projections, that is, we
have a set of outcomes € and projections {P, : x € Q} such that .o P, = I. Suppose that
2 C R. The observable associated to the projective measurment is an operator O € Lin(H)

given by
0= Z zP,.
e

Since x are real, O is Hermitain, and, conversely, each Hermitian operator O has a spectral
decomposition of this form, thereby defining a projective measurement.

Remark 1.20. In physics, observables are often the preferred way to reason about measurements.
Measuring the observable O is the same as performing the projective measurement defined by
the spectral decomposition of O.

Example 1.21. Since Z = |0)(0| — |1)(1], the observable Z corresponds to measuring in the
Z-basis with outcomes {£1}. Similarly, since X = |[+)+| — |=)—|, measuring X corresponds
to measuring in the X-basis with outcomes {+1}. More generally, we may measure a qubit in
the basis given by the antipodal points = (x,y, z) and —r on the Bloch sphere with outcomes
{£1}. This gives an observable

B 1142z -y 1/ 1—-2 —z+iy
O(T)p(r)_p<_r)2(x+iy 1—2)_2 —x — 1y 142

o z T —1y
S \x+iy -z )7

An observable provides a compact formula for the expectation value of the measurement
outcome. If O =3~ o xP, is an observable and p € S(H), then

O]

E(outcome) = Z xP(outcome z) = tr[Op].
e

In case p = ) (¢|, then the right-hand hand side is equal to (|O|¢).



1.7 Uncertainty Relation

Let |¢) be a pure state. Note that since X = |[+)(+| — |[-)}—|, we get the following:
[(1X[9)] = |px (1) = px (=1)| = [2px (1) — 1| = 2max{px (1), px (=1)} - 1,

where px(x) denotes the probability of getting outcome x after measuring in the X-basis.
Clearly,
0 < [{9[X[|p)] < 1.

The upper bound is attained precisely when either px(1) = 1 or px(—1) = 1, that is, when
the measurement outcome is certain. The lower bound is attained precisely when px (1) =
px(—1) = 1/2, which means that the measurement is completely uncertain. Thus, (| X|[¢))]
provides a meaningful way to quantify our uncertainty about the measurement outcome.

Using Z = |0)0| — |1)(1], we similarly obtain |[(¢)|Z|¢)| = 2max{pz(1),pz(—1)} — 1. Com-
bining the two, we get

(XD + (D] 21y < 2.

Note that by the previous discussion, the equality can never be attained. However, there is a
significant strenghtening:

Theorem 1.22 (Uncertainty relation for Pauli matrices). For every state |¢), we have

(W1 X8|+ (w|Z1)] < V2.
Proof. Let sx,sz € {£1} and let A = sxX + szZ. We need to show that

sx (VIX[9) + 52| Z|9) = (W|A[p) < V2.
Using Cauchy-Schwarz inequality, we get

CS
(WlAJp) < [lAfp)] < [l All
where [|A[| = supj =1 [[A|¥) | is the operator norm of A. Further,

ATA = A% = (sxX +522)(sxX +522) =1+ sxs7(XZ+ZX)+1=2I

This calculation shows that A/+/2 is unitary. Since the operator norm of a unitary is one, we
get

4l = v2|a/ve| = v2
0

We can interpret the quantity max{px(1),px(—1)} as the guessing probability pguess,x, that
is, the maximal probability of guessing the outcome of X-basis measurement on the state |v)
— the best option is to just guess the outcome with larger probability. Using this notation, we
can rewrite the uncertainty relation from Theorem as follows:

(WX [)] + (] Z]9)] < V2
2max {px(1),px(—1)} — 1+ 2max {pz(1),pz(-1)} — 1 < V2
V2

Dguess, X + Pguess,Z <1+ 7

So the uncertainty relation from Theorem [1.22 gives a bound on the sum of probabilities of
guessing the two measurement outcomes correctly.



1.8 TODO

e simultaneously diagonalizable operators

e more about uncertainty principle



Chapter 2

Multiple Quantum Systems

2.1 Multiple Systems

If we have classical random variables with outcome sets Y1, ..., X, then their joint distribution
is a probability distribution on the product set

By x o x By ={(z1,...,x0) 1y € 55}

So n bits are represented by an n-tuples.
Tensor product is precisely the quantum version of this. If we have bases X1, ..., %, for the
Hilbert spaces Hi, ..., Hny, then the Hilbert space

H1® - @Hnp
is the tensor product with basis
{lz1) ® |w2) @ -+ @ [wn) : |25) € s}

We will sometimes use the shorthand |x1)|xe) - - |x,) or |1 -« 2y,). Clearly, we have dim(H; ®
- ® Hy) = dim(Hy) - - dim(H,,) since the basis elements are labelled by the elements of
Y1 X X Y.

Axiom 4. If we have multiple quantum systems with Hilbert spaces H1, ..., Hy, then the joint
system has associated Hilbert space H1 ® - - - ® H,,.

Example 2.1. If we have two qubits, the joint Hilbert space is C?> ® C2, which is 4-dimensional
and has the standard basis |00), |01), |10),|11).
The Hilbert space of n qubits is (C?)®", which is 2"-dimensional and has the standard basis

{1 -~ xn>}x1,...,xn€{0,1}‘ -

Notation. We will often label different quantum systems by A, B, C, ... and denote the associ-
ated Hilbert spaces as Ha, Hp, Hc, - ... The bases of these Hilbert spaces are usually denoted by
Y4,X8,20,.... We will also write Lin(A) = Lin(Ha), S(A) = S(Ha), PSD(A) = PSD(Ha4).
We also write for example AB instad of H4 ® Hp. So, we may write pap € S(AB) for a
quantum state shared by Alice and Bob and p4 for a measurement on Alice’s quantum system.

10



Tensor product of operators. If M4 € Lin(A) and Np € Lin(AB), then My ® Np €
Lin(AB) is defined by extending the following formula by linearity:

(M4 ® Np)|[ta) @ |¢B) = (Maltha)) ® (NB|éB)),

where [Y4) = >, Yala), [¢B) = D, ¢ulb), and [a)|¥E) = 3, , Yadplab).
Example 2.2. If M4 = |a)d'| and Np = |b)V/, then M4 @ Np = |a)d'| @ |b)}V'| = |ab)a'V'|.
Definition 2.3. Let A and B be quantum systems. States of the form p = ps ® pp € S(AB),

for pa € S(A) and pp € S(B) are called product states. A state, which is not a product state
is called correlated.

Note that the previous definition makes sense since the tensor product of positive operators
is positive and tr[M4 ® Npg| = tr[My4] tr[Np].

Example 2.4 (classical states). A joint probability distribution pxy € P(XY) associates a
probability pxy (x,y) to each pair (z,y) € Xx x Xy. The classical state corresponding to XY
has the density matrix

pPXY = ZPXY(%Z/)’%W@:ZJ\ = ZPXY($ay)|x><x‘ ® [y)yl-

Moreover, any classical joint state is of this form. The state pxy is a product state if and only
if X and Y are indpendent under the probability distribution pxy. Thus, one can think of
product states as the quantum generalization of independence in probability theory. Most of
the quantum states are neither classical nor product states. O

Example 2.5 (maximally correlated state). A classical state that is not a product state is for
example the maximally correlated state:

oAB = %(IOOXOOI + L)1) = %(IOXOI ® |0X0] + [1X(1] @ [1)X1]).

Writing this in the basis |00), |01), [10),|11) gives

1
B 1
OAB = 9
1
L]
Exercise 2.6. Let
111 1(10
PA=5\1 1) P27 3\0 1)-
Express pa ® pp in the standard basis |00), |01),[10), |11).
Solution.
1 1
o 1 1)0B 1pB o 1 1 1
pA®pB_4<lpB o) " 4f1 1
1 1
O

11



Example 2.7 (pure product states). If H4 = Hp = C2, then pure product states are for
example the basis states [00), [01), |10) and |11). Another example is the state |[+) ® |+). O

We will use abbreviation [ 4)|¢p) = |1h4) @ |¢pp) for pure states.

Example 2.8 (maximally entangled state). A state that is neither classical nor a product state
is the mazimally entangled state:

1
935 = 75(100) + [11).
The density matrix is
1
pap = |®4) P75l = 5(100)X00] + [00)(11] + [11)00] + [11)11]).
Writing this in the basis |00), |01), [10),|11) gives

1 1

_1
PAB—2

1 1

Recall that |zy) = |r) ® |y), so we can also write

PAB = %(IOXOI ® |0XO] + |0)1] @ [0X1] 4 [1X0] @ [1)0] + [1X1] @ [1){1]).

2.2 The Partial Trace
If Alice does a measurement p4: 2 — PSD(A), how to describe this on AB? Define
pa®Ip:={ua®Ip:xcQ}.

This is a measurement on the whole system since tensor products of positive operators are
positive and

Z/LA(CE)@IB = <Z,U,A(£E)> ®Ig)=14®Ip = I4pB.

zEQ z€Q

More generally, suppose that Alice and Bob have measurements pu4: 23 — PSD(A) and
up: Qo — PSD(B). This corresponds to a measurement on AB given by

pa @ pp = {pa(z1) ® pp(r2) : (v1,72) € Y x Qa}.

The outcome probabilities for Alice do not depend on the choice of measurement for Bob.
Given a state pap € S(AB), what is the state p4 of Alice? We would like

tr[pa(z)pa] = tr[(pa(z) ® Ip)pasl,

12



for any measurement operator p4(x). We can proceed by computing the trace on the RHS. We
chose bases {|a)},cy;, and {|b)},cx,,, of Ha and Hp, respectively, which gives the product basis
{la) ® |b)} for Ha ® Hp. We can expand the RHS above

tr((pa(z) ® Ip)pap] = Y (abl(ua(z) © Ip)paplab) use |a) @ [b) = (14 @ |b))]a)

a€EX 5
beXp

- Z(a\(IA ® (b)) (pa(r) ® Ig)pap(la @ |b))|a)

a,b
= Z(am,q(x)(IA ® (b])pas(1a ® |b))|a)
a,b

= Z<a|,uA(:E) <Z(IA ® (b)) pa(Ia ® ’b>)> |a).

b

Finally, we define

pa=> (Ia® (b])pap(Is @ |b)).
b

Definition 2.9 (partial trace). Let A and B be systems with Hilbert spaces H4 nad Hp and
choose basis {|b)} ¢y, for Hp. Let Map € Lin(AB). Then the partial trace over B of Map is

trp[Mag] = > (14 ® (b)) Map(Is @ |b)).
b
For pap € S(AB), we call py = trp[pap] € S(A) the reduced state of pyp on A.
If we choose a basis |a) for H 4, then the entries of the partial trace are given by
(altrp[Maglla’) = (a] Y (14 ® () Map(Ia @ |b))|a’) =Y _(ab|Map|a'b).
b b

Further, we can write

Vas= S Ml = Y S Muawlae] o 0]

a,a’€¥p b eXp a,a’€X 4 b eXp

The partial trace is then

trp[Map] = Z Map arpla)a’| = Z <Z Mab,a’b) |a)a'l.
b

a,a’,b a,a’
For tensor product of operators Map = Ng ® Op, the partial trace is given by
tl"B[NA ® OB] =Ny tr[OB] = tr[OB]NA.

This follows from the above since Myp oy = NooOpyy and Yy Map arp = My o tr[Op]. Every
operator can be written as a linear combination of tensor product operators, so this formula is
sufficient to compute partial traces of arbitrary operators. Moreover, it shows that the notation
of the reduced state is compatible with the notation for product states: pap = pa ® pp, then
pa and pp are reduced states of A and B, respectively.

13



Lemma 2.10 (properties of partial trace). (a) The map trp: Lin(AB) — Lin(A) is linear.
(b) For Nj € Lin(A) and Myp € Lin(AB), we have tr[(Ng ® Ig)Map] = tr[Natrg[Mag]].
(¢) The partial trace does not depend on the choice of basis Y.

(d) For Map € Lin(AB), we have tr[trg[Map|] = tr[Mag].
(e) If Pap € PSD(AB), then trg[Pag] € PSD(A).

Proof. (a) The formula in the definition is linear in M4p.

(b) We can follow the same calculation that we used in the derivation of partial trace with
My p instead of pap and N4 instead of pg(x).

(c) Consider the formula in (b). Since LHS does not depend on the choice of basis, neither
does the right-hand side. From linear algebra, we know that tr[AX| = tr[BX] for all X € Lin(H)
if and only if A = B. Since the equation in (b) holds for all N4, using the fact, trg[Map]| is
determined.

(d) Immedietelly from (b) by using Ng = I4.

(¢) By Theorem [1.4{(d) it suffices to check that

tI‘[QA tI‘B[PAB]] >0, forall Q€ PSD(A).
If Q4 > 0, then Q4 ® Ig > 0. So we can apply first (b) and then Theorem [I.4{(d):

tr[Qa trp[Pap]] = tr[(Qa ® Ip)Pap] > 0.

Example 2.11. Let [®7 ;) = %(mo) +[11)) and pap = |7z P 5. Then

1
0], 1/1 0
0 ]_2(0 1)'
1

This is the maximally mixed state. This also discribes the situation where Alice has a classical
bit equal to zero or one with equal probability. If Alice cannot communicate with Bob, she
cannot see the difference. d

| =

1
0
pa = trplpas] = trp[g [
1

o O oo
o O O O

We have three sources of mixed states in the quantum formalism: probabilistic mixtures (we
receive p, with probability p(x)), restricting to subsystem (even if [4p) is pure, the reduced
state p4 can be mixed), measurement (if we perform measurement g on p, we have some
probability distribution on €2, which can be described by a classical state).

Example 2.12 (marginal distributions). For classical states, the partial trace reduces to
marginal distirbutions. Let

pxy = Y pxv (@ y)le,yie,yl =Y pxy (@, y)le)z| @ [y)yl,
T,y T,y

where pxy is a joint probability distribution on Xx X ¥y . The reduced state
px = try[pxy] =) <ZPXY($»?/)> )z =) px(x)|z)zl,
T Y T

14



where px is the marginal distribution of random variable X given by
y

The two random variables X and Y are idependent, that is, pxy(z,y) = px(z)py(y), if and
only if pxy is a product state, that is, pxy = px ® py.

Another important concept in classical probability is the notion of conditional probability.
In quantum information, there is no direct generalization of conditional probabilities for general
quantum states. We come to this when dealing with quantum entorpy later.

2.3 Purification

The situation when with probability p(x) we output a state p, is described by the density matrix
pPA =D peqP(7)ps. However, given the density matrix, the interpretation can be non-unique.
Suppose now that we want to model a different situation, namely with probability p(z) we
output a state p,, but now we also receive the value of x as well. This can be described by
introducing a reference system X with Hilbert space C* and taking the joint state

pax = Y p(x)ps @ |z)x].
€

It is easy to check that tra[pax] = pa. Once we actually recive outcome z, the state must
be p, (like in probability if we see outcome of die to be 6, then the die is in the state 6 with
probability 1). We may consider X to be side information. It turns out that it is usefull to have
quantum side information.

Definition 2.13. Given pyg € S(H4), a purification of p4 is a pure state |par) € Ha @ Hpr
such that

trr[|@arXP AR = pa.

The system R is called a reference or purifying system. We will refer to both |par) and
pAR = |par)PAR| as purification of p4.

Lemma 2.14. Every pa € S(A) has a purification. The dimension |R| of the purifying system
can be taken to be rank(py4).

Proof. Let r = rank(p4) and py = Z;;é pjle;j)Xej| be a spectral decomposition. Put Hr = C"
and

r—1
[bar) =Y V/Biles) ® ).
=0

Then

trr(|[par)Parl] = trr Z VDipkle; ek ® |7)k] Zm@y Nejl = pa.

7,k=0
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The proof does notu seo orthogonality given by the spectral decomposition. So we may take

any decomposition pa = >, p;[¢;(¢;| and take 3, \/pj|1;) ®|j) as purification. This does not
give the optimal dimension of the reference system.

Exercise 2.15. Compute the purification of p4 = £(JOXO0| + [+)(+] + [1)}1]).
Solution. 1
(@ar) = —=(100[0) + [+)I1) + [1)[2).
O

Lemma 2.16. If |par) and |pas) are purifications of pa and |R| < |S|, then there is an
isometry Vr_,s € Isom(R,S) such that

(Ia ® VRs)|0aR) = |das)-

In particular, when S = R, then the purificaton is unique up to a unitary.

Proof. Uses Schmidt decomposition. O

2.4 Schmidt decomposition

A standard result in linear algebra is that every matrix has a singular value decomposition
(SVD). Let M € Lin(H,K), there are bases {|e;)} and {|f;)} of K and #, respectively, and
§1 > -+ > 8, > 0, the singular values of M, such that

M =" sile)fjl.

J=1

The number of singular values equals r = rank(M).

To find SVD, we can take MM, which is positive. It has eigenvalues s?. The eigenvectors
of MTM and MM are the bases {|e;)} and {|f;)}.

We may interpret a pure state Yap € Ha ® Hp as a linear map M € Lin(H*%,Hp) and
apply the singular value decomposition to M. This leads to the Schmidt decomposition.

Theorem 2.17 (Schmidt decomposition). Let [pap) € Ha ® Hp be a pure quantum state.
Then there are bases {|e;)} and {|f;)} of Ha and Hp, and positive number sy > --- > s, > 0,
where v < min(|A|, |B), such that }_; s? =1 and

T

[WaB) = sjles) @ |f).

j=1
The numbers s1,...,S, are called Schmidt coefficients and r is calleed the Schmidt rank.

Proof. Let {|a)} and {|b)} be arbitrary basis for H4 and Hp, respectively. Let M be the
|A| x | B|-matrix defined by My, = (abltyap). We apply SVD to M and get

M= sle))
j=1

16



Thus,

<

Map = (a|M[b) = > sjale;){g;[b)

<.
Il
—

sj(ale;)(blg;)

I
]~

<.
Il
_

I
]~

sjlale;) (bl f;),

.
Il
_

here |f;) denotes the vectors whose entries with respect to the basis {|b)} are the complex
conjugate of the entries of |g;), i.e., (b|f;) = (blg;) = (g;|b), for all b. Note that {|f;)} is also an
orthonormal basis. We have

[YaB) =D Mala) @ [b)

a,b

=D silaley)(0lf;)la) @ [b)

a,b j=1

— ZZsj!a>(a!€j> ® [b){bl f;)

j=1 ab
.
= sjles) @f)-
j=1

. . 2 _
The state is normalized, so ), s7 = 1. O

Exercise 2.18. Compute the Schmidt decomposition of

[Yap) = ——=

1
1 1
V10 | 2

-2

Solution. To do it systematically, reorganize the vector into the matrix M, e.g., we take |01) to

|OX1|. We get
1 11
M=— .
/10 <2 2)
Then we compute the SVD.
To get the left singular vectors, we take

MM = (1(/)5 4(/)5> '

The eigenvalues of MMT are 1/5 and 4/5, so the Schmidt coefficients are

s1=—= and s9=

2
NG NG
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and the eigenvectors are just the computational basis |0) and |1).
To get the right singular vectors, we take

= (U, ),

We have eigenvalue 1/5 with eigenvector <D and 4/5 with eigenvector ( 11>. After normal-

ization, we get the right singular vectors |+) and |—). Finally, we get

van) = S=l0)® 14) + =) @ |-).

2
—1
7

Lemma 2.19. If |¢pap) is a pure state with Schmidt decomposition

T

baB) = siled) @ |f:),

i=1
then the reduced density matrices are given by

s T

pa=> sileel, and pp =1 sIfi)fil-

i=1 =1

In particular, Schmidt rank and Schmidt coefficients are uniquely determined by the rank and
the non-zero eigenvalues of the reduced states, respectively.

Proof. We compute
T T
pa=trpl[Yap)asll = tra | > sisilejler] @ [} ful | =D s3le;)esl.

jk=1 j=1
Similarly for pp. O
Corollary 2.20. A pure state |pap) with density matriz pap is a product state if and only if
pa is pure if and only if pp is pure.
2.5 Entanglement

Two random variables X and Y are independent if the corresponding classical state is a product
state pxy = px ® py. If X and Y are not independent, the are correlated. For instance the
maximally correlated state on two qubits

pxy = 5(00400] + [11)11]).

Non-classical correlations, so-called entanglement, creates fundamental difference between clas-
sical and quantum information theory.

18



Definition 2.21. A pure state [ ap) € Hap is called entangled if it is not a product state,
i.e., there are no |t 4) and [¢p) such that [Yap) = [Ya) ® |¥B).

The following lemma follows directly from Theorem [2.20

Lemma 2.22. A pure state pap = |Yap)ap| is entangled if and only if the reduced density
matrix pa (or pp) is not pure.

Definition 2.23. A state pap € S(AB) is mazimally entangled state if pap is pure and both
reduced states are maximally mixed, i.e., pg = I%IIA and pp = ﬁIB.

The pervious lemma implies that maximally entangled states are indeed entangled since their
reduced states are maximally mixed. We are not going to make this precise at this moment,
but the “more mixed” the reduced states are, the “more entangled” the state is. We will come
back to this later.

By Schmidt decomposition a pure state is maximally entangled if and only if its Schmidt
rank is d and its Schmidt coefficients are all equal to 1/v/d, where |A| = |B| = d. In particualr
maximally entangled states exists if and only if |A| = |B|, and they are of the form

d
1
[®hp) = —F= Z lej) @ [fj) € Ha® Hp.
Vd =

For example using the standard basis for both, we get
d—1

1
®hg) = —= > lil) e C?eCY
\/;i =0

Lemma 2.24 (properties of maximally entangled states). Let |®% 5) be the mazimally entangled

state and let pap be its density matriz.

(a) The reduced density matrices are mazximally mized: py = %I A-

(b) For any d x d matriz M, we have (M ® Ip)|®%5) = (Ia ® ME)|®Y ).

(¢) For two d x d matrices M and N, we have (®}5|Ms ® Np|®}z) = Jtr[MTN] =
1 T

When Ha = Hp = C? and we use the standard basis, then the notation is clear. In general,
the operators My, Mg, etc., are defined with respect to the same basis as those obtained in the
Schmidt decomposition.

Exercise 2.25. Show that %(|00> +11)) = %(H—F) +|==)).

Solution. Use Theorem [2.24(b). We have (U ® U)|®7 ) = |®} ). Now just apply the unitary

on-(t 1)



If we have classical state on systems X and Y, it is of the form

pxy = pxy(,y)lz)e  |y)yl
Yy

It is a convex combination of the state |z)z| ® |y)y|. The next definition capters wider class of
states where correlations between A and B are of classical nature and defines entanglement as
its complement.

Definition 2.26. A state pap € S(AB) is separable if there is a collection of states p4 , € S(A),
pBz € S(B), for x € Q, and a probability distribution p on €, for soem set €, such that

PAB = Z P(x)pas ® pPBa-
€N

A state is called entangled if it is not separable.

Clearly classical states are separable. If a state is entangled, there is no choice of basis for A
and B such that the state is classical in that basis. We can interpret separable states as follows:
(1) Alice and Bob generate some shared classical random variable with outcome =z € Q. (2)
Based on the outcome, Alice prepares p4 , and Bob prepares pp .. Thus, spearable states form
a class of states where the correlations between Alice and Bob are of classical nature.

The definition of entanglement for pure states is consistent with the latter definition. Indeed,
a pure product state is separable, and conversely we know that if a pure state is a convex
combination of product states, then it must be product state itself. Also, if |YapXan| =
pA ® pp, then py and pp must be pure since 1 = rank(pap) = rank(pa) rank(pp).

2.6 TODO

e revise the proof Schmidt decomposition
e prove Theorem [2.16
e the no-communication theorem

e add problem about tensor product of observables
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Chapter 3

Non-local games

Non-local games provide a mathematical framework to study the power of entanglement.

3.1 Basic definitions

Definition 3.1. A non-local game is a 6-tuple G = (I4,Ip,04,0p,7, V), where 14 and Ip are
finite sets of questions, O4 and Op are finite sets of answers, 7 is a probability distribution on
IpxIp,and V: Og x Op x Ix x Igp — {0,1} is a winning predicate.

The game is played as follows: the referee selects a pair of questions (z,y) € I4 x Ip
according to 7w and sends x to Alice and y to Bob. Alice responds with a € O4 and Bob with
b € Op. The players win if V(a,b,z,y) = 1. The players can agree on a strategy before the
game starts, but cannot communicate afterwards.

Definition 3.2. th Given a non-local game G = (I4,1p,04,04,7, V), a strategy is an element
p = (p(a,blz,y))apay € [0, 1]94xOsxIaxIs guch that for each (z,y) € I4 x I, we have
S plablay) =1
(a,b)EoAXOB
Given a strategy S for the game G, the succes probability is defined as
w(G,9) =Y w(x,y) Y V(a,bz,y)p(a,blz,y).
z,y a,b

We say that a strategy S is perfect if w(G,S) = 1. For a fixed collection of possible strategies
S, then we define the associated value of G by

w(g,S) = Zlégw(g, S).

Definition 3.3. A deterministic strategy for a non-local game G = (I4,1p,04,04,m, V) is
given by a pair of functions f: I4 — O4 and g: Ip — Op.

Definition 3.4. A strategy p for a non-local game G is called classical/randomized if there exists
a probability space (€2, ) and for all a, z and b, y measurable functions p4(a|z, ), pp(bly,-): @ —
[0, 1] such that for all z,y,w,

ZpA(a|x,w) = ZpB(b|y,w) =1,
a b
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and
pla, b, y) = / paalz,w)ps (Bly, w)dp(w).

w

The classical value of a non-local game G is denoted by w.(G).

Proposition 3.5. If G is a non-local game, then w.(G) is attained by a deterministic strategy.

Definition 3.6. A strategy p for a game G is non-signalling if every for every a,b, xz,z’,y, 1/ it

Zp(aab’xvy) = Zp(aab‘x,ay)v and Zp(aab’xvy) = Zp(aab‘x7y,)'
a a b b

holds

Definition 3.7. In a (finite-dimensional) quantum strategy Alice and Bob share a quantum
state pap € S(Ha ® Hp), and their answers are the result of a measurement on their system.
For each x € I4, there is a measurement p%: Oq4 — PSD(H4) on Alice’s system and Alice
answers the outcome of the measurement. Similalry, for each y € Ig, Bob has measurement
wh: Op — PSD(H ) and answers the outcome of his measurement. This means that Alice and

Bob answer a and b, when asked z and y, with probability

pla,blz,y) = tr [(1%(a) ® i (b))pas) -

The quantum value of a game G is denoted by w,(G).

3.2 CHSH game

The Clauser-Horne-Shimony-Holt (CHSH) game has I4 = Ig = Oy =
winning predicate is given by

z-y=(a+b) mod2 < zAy=adb.

The probability distribution 7 is just the uniform distribution on {0, 1}2.

Classical strategy. We first consider classical strategies. Suppose that there exist a deter-
ministic strategy, given by functions f,g: {0,1} — {0,1} such that a = f(z) and b = f(y), that

wins for all pairs of questions. The winning condition implies that
Z f(z)+g(y) mod 2= Z r-y=1
z,ye{0,1} z,y€{0,1}

On the other hand,

Yo f@Agy)=2 > fl@)+2 > ),

z,ye{0,1} ze{0,1} ye{0,1}

which is even. Thus, w.(G) < 3/4. There is a deterministic strategy that achives this value,

e.g., always answer a = b = 0. Therefore w.(G) = 3/4.
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Quantum strategy. We will use observables with outcomes +1 corresponding to answers a
and bas (—1)% and (—1)°. We encode Alice’s projective measurement with operators % (a) = P¥
corresponding to the question x by the observable A* = Py — P{. Similarly, we encode Bob’s
projective measurement with operators puf(b) = Qg corresponding to the question y by the
observable BY = Qf — QY.

A quantum strategy is determined by a state pap = |1)(¢|, Alice’s obserables {AO,AI},
and Bob’s observables {BO, B 1}. The probabilty that Alice and Bob give the same answer to
x and y minus the probability that hey give different answers is given by

P(a # ) —P(a = b) = (¢[A" @ BY[¢).
Further,
B := 2P(win) — 1 = P(win) — P(lose) = iwAO @B+ A"® B' + A' @ BY — A' @ B|y).

The quantity [ is called the bias of the strategy.
Consider the states

|1o(0)) = cos 0]0) + sind|1), |1o(0)) = —sin6|0) + cos O|1).

Clearly these form an orthonormal basis. The corresponding vectors on the Bloch sphere are
7p = (sin 26, 0, cos 20) and —7p, respectively. The corresponding observable is

L _ (cos20  sin20
0p(7) = p(r) — p(=7) = (sin 20 — cos 29>

With the notation in place, we are ready to choose a strategy. As a quantum state, we pick
the maximally entangled state |¢) = |®7 ) = %(!Om + |11)). The Alice’s measurement is
given by the observables

o (1 0\ _ - 01
A_00_<0 )=z A=o=(] ,)=X

Bob’s measurement is the basis measurement corresponding to 7 = %(1,0, 1), for y = 0, and

§= %(—17 0,1), for y = 1. This corresponds to the measurement in the bases
T T
{cos( )|0) + sm(g)\w — s1n(§)|0> + cos(— )\1>}, for y =0,
{cos(—%)\m + sm(—g)]l) —sin(=)[0) + COS(‘%)‘U}? for y = 1.

In terms of observables, we have

1L (1 1) Z+X L (1 -1\ Z-X
BY=0z = = R . |l B
: \/§<1 —1> V2 vzl S Ve

We have 7 = (x,y, 2) and §= (2/,y,2’) in the Bloch sphere. Recall that

o z T — 1y
o) = <x+iy -z )



If |¢) = %(!O@ +111)), by Theorem @(c), we get

{(¥0(F) @ O(3)P) = %tr[O(F')TO(E’)]-

By directly computing this, trace, we get (¢|O(F) @ O(8)|v) = za’ — yy' + zz. We use this to
calculate 3. Note that

1

B =100 @ Orss + 00 ® Orjg + Ors ® Orjg = Orya @ O_ryslth)
1 1 1 1 1

= ((0=04+—=)+ (0 =0+ —=)+(—=—040) = (—=+0—0
(004 204004 Z (S5 -040) - (- +0-0))
1
E.

=

From this, we Immedietelly get P(win) = 5 + = cos?(1/8) ~ 0.85. We have proven the

2

S

following theorem.

Theorem 3.8. If G is the CHSH game, then

we(G) > % + 2\1@ > we(G).

The following Tsirelson bound shows that in fact we cannot do better.
Theorem 3.9 (Tsirelson bound). Let G be the CHSH game. Then

1 1

5 + ok

Proof. It remains to prove the upper bound. The key is that the bias 3, defined above, is derived

for an arbitrary quantum strategy. Let [¢04p) be the shared quantum state, which we assume

to be pure and the measurements to be projective (we will later see that this is possible).
When we construct the observables A* and BY from a projective two-outcome measurement,

we see that A% and BY are Hermitian with eigenvalues +1. Consequently (A%)? = I4 and
(BY)? = Ip. Let

we(G) =

Mup=A"9@B°+ A9 B!+ A'® B" — A' @ B!
We have
4B = (Yap|Map|taB).

Using CS-inequality, we get

(anIMalban)] <\ (0anMapMhyltas) v/ Ganlvas)
— \/<

Ya|M3plYas)
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since M4p is Hermitian and |¢4p) is normalized. We will now bound the right-hand side. To
that end, we rewrite

M3, = (A’@ (B° + BY) + A' ® (B® — BY))”

:(AO®(BO+BI)+A1®(BO*BI)) (A0®(BO+B1)+A1®(BO*BI))

:(AO)2®(BO+Bl)2+(A1)2®(BO_Bl)2
+A0A1®(BO+B1)(BO—B1)+A1AO®(BO—Bl)(BO+Bl)

=13 @4l —[A°, AY] @ [B®, BY].

Note that, in general, for hermitian matrices M and N with M? = N? = I, we have by
triangle inequality and submultiplicativity

I[M, NJ|| = [MN — NM|| < [MN|| + [NM| < 2[[M|[|N]| = 2.
Now, using the CS-inequality, we get

[(YaBl[A°, A" @ [B°, B'||[vag)| < ||[A% A" @ [B®, BY]l¢an) || 1)l
1[4°, A" @ [BY, BY]||llan)llll[¢aB)]]
|

A0, A B0, B < 4.

IN A

So, <¢AB’M£BWAB> < 8 and we get

4B = (hap|Maplag) < V8 =2V2 =  w,(G) <

3.3 Mermin-Peris magic square game

Consider the magic square given in the Fig. on the left. Each variable can be assigned values
in {1}. We have six equations: each row and column corresponds to an equation x;x ;) = b.
So we have six Boolean linear equations.

The corresponding non-local game is defined as follows. The sets of questions are X =
Y = {1,2,3}. For a pair of quesitons (z,y) € X x Y, Alice and Bob must respond with
a = (a1,a2,a3),b = (by,ba,b3) € {—1, 1}3, respectively. Alice and Bob win the game if the
following three conditions are satisfied:

ai - ag - a3z = Ty, bl-bg-bgzcy, aa;:by.

In other words, their answers could form a part of the solution to the system of linear equations.

Classical strategy. First note that if there is a solution, then Alice and Bob can just agree
beforehand, defining a deterministic strategy. On the other hand if w(G) = 1, then there must
be a deterministc strategy attaining this value. After Alice and Bob receive questions (z,v),
then they must agree on the value of the (z,y) element, by the winning condition a, = by.
Doing this for every (z,y), we see that the strategy fixes a specific filling of the magic square
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T T3 T3 +1 ZRQ1|1I®Z|\Z®Z| +I1

T4 5 T +1 IX | XTI X®X| +1
T7 T8 9 +1 ZRX|XQZ|YQY| +I1
+1 +1 -1 +1 +1I -1

Figure 3.1: The Mermin-Peris magic square on the left. A 4-dimensional operator solution on
the right.

which Alice and Bob are both using. Moreover, the other winning conditions require this filling
to be a solution.

However, the system clearly has no solution. Indeed, suppose we have a solution such that
the row products are all 1, the first two column products are 1 and the third column prodcut
is —1. We get contradiction by taking all row products and obtaining 1, and taking all column
products and obtaining —1.

Quantum strategy. To obtain a quantum strategy, we will make use of the operator solution
given in Fig. on the right. Each element of the operator solution is a tensor product of Pauli
matrices on C?> ® C2. It is easy to see that each operator squares to the identity, operators
in each row and each column pairwise commute, the product of each row and of the first two
columns is the identity, and the product of the third column is the minus identity. In particular,
the operators in each column and each row can be simultaneously diagonalized.

Alice and Bob share the following entangled state in (Ha, ® Hp,) ® (Ha, ® Hp,):

9) = =00, @ 0)3, + 10, © 15) © (10040 @105 + 14 ® D). (3:3.)

V2 V2
We can use the Schmidt decomposition to check that |¢)) is in fact an entangled state. By
multiplying and reordering the factors of the tensor product, we get

£(100).4100) 5+ 01).4]01) 5+ [10).4110) 5+ [11) 4111) ), (332)

which is already a Schmidt decomposition with all s; = 1/2 and the standard bases. By
Theorem [2.19, we have

1
pa = 7(100)4 + [01).4 + [10)4 + [11).0),

which is not pure. So by Theorem [2.22] it is entangled.

Upon receiving questions from the referee, Alice and Bob each measure their two quibits
with the operator from the corresponding row or column in the magic square to determine their
outputs. For example, if Alice receives x = 3, she measures Z® X, X ® Z, Y ® Y, and answers
(a1, az2,as3) according to the outcomes. From the properties of the operators we discussed above
it directly follows that their answers will satisfy the corresponding equations.
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It remains to argue that their answers will agree on the common entry. We can check this
individually, for example, consider the entry Z ® X. Using the equations

Z|0) = +1[0), Z[1) = —[1), X|0) =[1), X[1) =10),
and the Eq. (3.3.2)), we can conclude that
(Z©X)a®(Z @ X)plY) = |4).

Another way to see this is to rearrange (Z ® X) ® (Z ® X) to (Za, ® Zp,) ® (X4, ® X4,) ans
use the fact that for maximally entangled state |®7 ), we have

1 1
V2 V2
Then we can deduce this from Eq. (3.3.1)).

|7 5) = —=(100) +[11)) = (++>+|——>)=12(!i7i>+|—i,—i>)'
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Appendix A

Tensor Product
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