
Problem sheet 5: Basic Quantum Information Protocols

Problem 1 (HW). Entanglement swapping. Suppose that Alice and Bob both share a
maximally entangled state with Charlie. Describe the procedure by which Alice and Bob can
generate a maximally entangled qubit pair by only acting on their local quantum system and
exchanging classical bits.

Problem 2. Error correction and Kraus operators.

(a) Suppose that an error correcting code V can correct errors from a noise channel with
Kraus operators {Xi}. Show that it can also correct errors for any channel which has
Kraus operators {Yj}, where each Yj is a linear combination of Xi’s.

(b) Consider an error correcting code on a system B of n qubits, with P the projection
operator on the code subspace. If M is a qubit operator, let Mi denote the operator
which acts as M on the i-th qubit and as 1 on all other. Suppose that PMiNjP is
proportional to P , for all i, j = 1, . . . , n and M,N ∈ {I,X, Y, Z} are arbitrary Pauli
operators. Show that we can correct an arbitrary error channel of single-qubit errors, i.e.,
any channel of the form

ΦB =
n∑

i=1

piΦi,

where {pi} is a probability distribution and Φi is a channel which acts only on the i-th
qubit.

Problem 3. Remote state preparation. This is about a protocol callled remote state
preparation, which is closely related to quantum teleportation, but here only one bit of classical
communication is required to remotely prepare a given qubit state. Compared to the teleporta-
tion, the sender knows a classicla description of the state to prepare, and has access to a larger
number of entangled qubits.

(a) Let |ψ⟩ = α|0⟩+ β|1⟩ ∈ C2 be a pure qubit state. Show that

(|ψ⟩⟨ψ|)T = |ψ⟩⟨ψ|, and 1 − |ψ⟩⟨ψ| = |ψ⊥⟩⟨ψ⊥|,

where the transpose is with respect to the computational basis, and |ψ⟩ = α|0⟩ + β|1⟩,
|ψ⊥⟩ = β|0⟩ − α|1⟩.

(b) Suppose that Alice and Bob share a maximally entangled state |Φ+
AB⟩ =

1√
2
(|00⟩+ |11⟩).

Alice would like to give Bob the state |ψ⟩, but she does not want to give Bob any infor-
mation about α and β.

Alice performs a projective measurment on her part of the maximally entangled state,
corresponding to the projectors Π0 = |ψ⟩⟨ψ| and Π1 = 1 − Π0. Show that the outcome
probabilities of this measurement are both 1/2.



(c) Alice then sends Bob the single-bit outcome of her measurment x in a classical system C.
Show that Bob now holds the state

ρBC =
1

2
|ψB⟩⟨ψB| ⊗ |0C⟩⟨0C |+

1

2
|ψ⊥

B⟩⟨ψ⊥
B | ⊗ |1C⟩⟨1C |,

where |ψ⊥⟩ = β|0⟩ − α|1⟩.
(d) Assumme, for the moment, that |ψ⟩ is of the form |ψ⟩ = 1√

2
(|0⟩+ eiθ|1⟩). Show that

Z|ψ⊥⟩⟨ψ⊥|Z = |ψ⟩⟨ψ|,

and hence describe how Bob can recover the state |ψ⟩ from ρBC .

(e) Suppose that Alice wants to send Bob many qubits |ψ1⟩, . . . , |ψn⟩ ∈ C2, which do not
necessarilty take the above form. Assume that Alice and Bob share n · m maximally
entangled states, where m = 2n+logn. They each arrange their qubits in a rectangle, so
that the qubit from the (i, j)-th maximally entangled pair lies in the i-th row and j-th
column. For each i, i = 1, . . . , n, Alice measures the entire i-th row of qubits in the{
|ψi⟩, |ψi

⊥⟩
}

basis. Show that, with high probability, there will be an entire column of

qubits for which the measurements were succesful, that is, the result corresponded to the
projector Π0 = |ψ⟩⟨ψ|.

(f) Alice sends Bob the index j = 1, . . . ,m of such column classically. Show that in this way,
Alice can remotely prepare n states in Bob’s system with approximately 1 bit of classical
communication per state, in the limit as n→ ∞.


