Problem sheet 5: Basic Quantum Information Protocols

Problem 1 (HW). Entanglement swapping. Suppose that Alice and Bob both share a
maximally entangled state with Charlie. Describe the procedure by which Alice and Bob can
generate a maximally entangled qubit pair by only acting on their local quantum system and
exchanging classical bits.

Problem 2. Error correction and Kraus operators.

(a) Suppose that an error correcting code V' can correct errors from a noise channel with
Kraus operators {X;}. Show that it can also correct errors for any channel which has
Kraus operators {Y;}, where each Y} is a linear combination of X;’s.

(b) Consider an error correcting code on a system B of n qubits, with P the projection
operator on the code subspace. If M is a qubit operator, let M; denote the operator
which acts as M on the i-th qubit and as 1 on all other. Suppose that PM;N;P is
proportional to P, for all 4,5 = 1,...,n and M,N € {I,X,Y,Z} are arbitrary Pauli
operators. Show that we can correct an arbitrary error channel of single-qubit errors, i.e.,

n
p=> pid,
i=1

where {p;} is a probability distribution and ®; is a channel which acts only on the i-th
qubit.

any channel of the form

Problem 3. Remote state preparation. This is about a protocol callled remote state
preparation, which is closely related to quantum teleportation, but here only one bit of classical
communication is required to remotely prepare a given qubit state. Compared to the teleporta-
tion, the sender knows a classicla description of the state to prepare, and has access to a larger
number of entangled qubits.

(a) Let |¢) = a|0) + B|1) € C? be a pure qubit state. Show that
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where the transpose is with respect to the computational basis, and [¢)) = @|0) + §|1),
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(b) Suppose that Alice and Bob share a maximally entangled state |®7 ) = %UOO) + [11)).
Alice would like to give Bob the state [¢), but she does not want to give Bob any infor-
mation about « and £.

Alice performs a projective measurment on her part of the maximally entangled state,
corresponding to the projectors Ily = |¢)¢| and II} = 1 — IIy. Show that the outcome
probabilities of this measurement are both 1/2.
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Alice then sends Bob the single-bit outcome of her measurment x in a classical system C'.
Show that Bob now holds the state
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where [) = B|0) — al1).
Assumme, for the moment, that |¢)) is of the form [¢)) = %(|0> + ¢¥|1)). Show that
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and hence describe how Bob can recover the state |¢) from ppc.

Suppose that Alice wants to send Bob many qubits [11), ..., |¢) € C2, which do not
necessarilty take the above form. Assume that Alice and Bob share n - m maximally
entangled states, where m = 2"1198"  They each arrange their qubits in a rectangle, so
that the qubit from the (7, j)-th maximally entangled pair lies in the i-th row and j-th
column. For each i, i = 1,...,n, Alice measures the entire i-th row of qubits in the
{\E% \Eﬂ} basis. Show that, with high probability, there will be an entire column of

qubits for which the measurements were succesful, that is, the result corresponded to the
projector Ty = ().
Alice sends Bob the index j = 1,...,m of such column classically. Show that in this way,

Alice can remotely prepare n states in Bob’s system with approximately 1 bit of classical
communication per state, in the limit as n — oc.



