GAMES AND ALGEBRAS
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ABSTRACT. We present an overview of the theory of nonlocal games
and how games induce algebras. These algebras have been used to sep-
arate various sets of quantum correlations, leading to the resolution of
problems of Connes, Kirchberg and Tsirelson. We survey the theory of
various families of games, including games arising from graph isomor-
phisms, graph colorings, and systems of equations.
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1. INTRODUCTION

Historically, groups and group like objects, such as groupoids and dy-
namical systems, have had various algebras affiliated with them and these
correspondences have led to a beautiful area often referred to as noncom-
mutative harmonic analysis.

Recently, certain types of games have had algebras affiliated with them
and this correspondence has been used to construct algebras with elusive
properties. The most famous example is the recent solution [JNV120] of the
Connes’ Embedding Problem by constructing a game whose affiliated tracial
C*-algebra is not embeddable in the sense proposed by Connes [Con76].
The construction of such an algebra had eluded operator algebraists since
the 1980’s. So the construction of algebras from games is turning into a
powerful tool and the mathematics surrounding this area is likely to continue
to develop.

The idea of using the type of games that we will be studying as a means
of checking proofs has been an active area of computer science since at least
the 1980’s [BGKWSS].

The purpose of these notes is to provide an introduction to this area,
together with a bit of the historical motivations. They are adapted from the
second author’s 2021 Copenhagen Masterclass.

For the purposes of clarity and in an attempt to unify results, we often
adopt notations that are different from the literature.

We begin with an exposition of the mathematics surrounding this area,
especially the relationship with the Connes’ Embedding Problem, and then
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focus on various families of games and what is known about them. Readers
impatient to see some games might want to jump around a bit.

There is already a tremendous literature in this area and we apologize in
advance for our many omissions. Generally, we have tended to cite more
recent works, which contain citations to the earlier works. Hopefully, we
have included enough leads that a diligent scholar will be able to uncover
these other treasures.

We would also like to thank the anonymous referees and Ken Dykema for
many helpful comments that improved our exposition.

2. Two PERSON COOPERATIVE GAMES

The types of games that we shall be interested in are ,
which are cooperative, memoryless and the players are non-communicating.
Generally, the two players are referred to as Alice and Bob. Intuitively,
in such a game the two players are playing cooperatively to give correct
pairs of answers to pairs of questions posed by a third party often called the
Referee or Verifier. Whether the pair of answers returned by the players is
satisfactory or not depends not just on the individual answers but on the
4-tuple consisting of the question-answer pair.

Such a game is described by two input sets 14, Ip, often thought of as
sets of questions, two output sets O4, Op, often thought of as answers, and
a function

V:04x0px1I4qxIp—{0,1},
often called the rules or verification function, where
W= {(a,b,z,y) : V(a,b,z,y) = 1},
is the set of correct or winning 4-tuples and
L:={(a,b,z,y) : V(a,b,z,y) = 0},

is the set of incorrect or losing 4-tuples.

For each round of the game Alice and Bob receive an input pair (z,y) and
return an output pair (a, b).

When we say that the players are not allowed to communicate or that the
game is non-communicating, this means that Alice must return her answer
without knowing the question y that Bob was asked and without knowing
the answer b that Bob gave. Similarly, Bob does not know Alice’s question-
answer pair.

When we say that the game is memoryless, we mean that if Alice and Bob
receive the same input pair (z,y) at two different rounds of the game, then
there is no penalty if they return different pairs of outputs for the different
rounds.

Thus, a game G is specified by (I4,Ip,04,0p,V). Before the game be-
gins Alice and Bob know the four sets and the function V. Even though Alice
and Bob are not allowed to communicate during the game they are allowed
to communicate before the game and decide on some type of strategy.
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When we want to talk about the probability of winning such a game we
also need to specify a probability density, i.e., a prior distribution, on input
pairs, i.e., a function 7 : I4 X Ig — [0, 1] such that

Z m(z,y) = 1.

z€ls,y€lp

For games with densities, Alice and Bob also know the density before the
start of the game. We denote a game with density by (G, ).

A for such a game is a pair of functions f : [4 —
O4, g:Ip — Op such that whenever Alice and Bob receive input pair (x, y)
they respond with output pair (f(z),g(y)).

Given a game with a density (G, 7) and a deterministic strategy as above,
the probability of winning the game is

Z?T((I?,y)V(f(JJ),g(y),l‘,y) - Z ﬂ'(%,y).

z,y (f(z),g(y),x,y)EW

The classical value or of (G, ) is defined to be the
supremum of this winning probability over all possible deterministic strate-
gies. Computing this value often requires searching over all pairs of functions
f, g and so can be computationally difficult. In fact, often it falls in the realm
of NP-hard problems.

The classical value of a game is generally denoted w(G, ), but we shall
write wget (G, ), since we will be examining several different versions of the
value of a game and want a notation that distinguishes them.

Here is a very simple example.

2.1. The CHSH Game. CHSH stands for Clauser-Horne-Shimony-Holt
[CHSHG69]. Here I4 = Ip = Oy = Op = Zo—the binary field. The function
V' is most easily described by saying that, given the input pair (z,y), the
players win if their output pair (a,b) satisfies

a+b=uzxy.

Let’s say that they also know that the probability is given by m(z,y) = 1/4,
i.e., the uniform distribution on the 4 possible input pairs.

If they choose the deterministic strategy of always returning 0 no matter
what input they receive then a+b = 0 and so they will win unless the input
pair was (1,1). Thus the expected value of this deterministic strategy is
3/4.

It is not difficult to show that among all deterministic strategies, this is
the one with the greatest expected value and that there is exactly one other
deterministic strategy with value 3/4.

If we fix 0 <t <1 and change the input probability to

7(0,0) =7n(1,0) ==(0,1) =¢/3, n(1,1) =1 —¢,
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then it is not hard to see that the best deterministic strategy depends on ¢.
For t <1/2,

m(1,1) > w(0,0) +=(0,1) + =(1,0),
and deterministic strategies that win for input pair (1,1) have a greater
winning probability.

We should remark that many authors define a game as consisting of
(Ia,1,04,0p,V) and the probability density 7= on inputs. Because we
want the freedom to vary the density on inputs we define a game as a 5-
tuple,

G = (Ia,15,04,08,V),

and a game with density as a 6-tuple (G, ).

2.2. Random Strategies, Perfect Strategies, and the Classical Value
of a Game. The fact that these games are memoryless allows for the pos-
sibility of strategies that produce the answer pairs randomly, i.e., if Alice
and Bob receive input pair (z,y) at two different rounds they might return
two different output pairs.

A for a game yields a conditional probability density,

pla,blz,y), x € Ia, y € Ip,a € Oa, be Op,

which gives the conditional probability that Alice and Bob return output
pair (a,b), given that they received input pair (z,y).

Often in the physics literature, they are concerned with how one can set
up an experiment that produces a given density p(a, b|x, y), in which case, by
a random strategy they mean the description of the experiment as opposed
to the density itself. Other times a random strategy might be described,
such as “first Alice flips a coin and Bob rolls a die, and then...”, without
explicitly giving the density.

Since we will generally not be concerned with precisely how a given condi-
tional probability density can be created, we will often conflate these terms,
especially in the context of games, and often refer to a conditional proba-
bility density as a random strategy for the game.

A deterministic strategy f : I4 — Oy, g : Ip — Op corresponds to a
density of the form

pla,blz,y) = {1’ a= f(z),b=g(y)

0, else

Note that any density such that p(a,b|z,y) € {0,1} arises in such a manner
from a deterministic strategy.

Given a game G = (I4,Ip,04,0p,V) with density on inputs 7 and a
random strategy p(a, b|z,y) the expected value of winning the game is given

E(p) = Y w(x,y)V(a,b,z,y)pla,blz,y) = Y 7(z,y)p(a,blz,y).

a7b7x7y (a7b7x7y)eW
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Hence, the deterministic value of a game G with density 7 on inputs,
Waet (G, m), is the supremum of E(p) over all densities of the above form.
When we introduce other concepts of the value of a game, it will be by
varying the sets of probability densities that we take the supremum over.

Thus, each game determines with prior distribution corresponds to a lin-
ear functional E(-) on the set of all densities p(a, b|z,y), but not every linear
functional of the form

F(p) = Z Ca,bz,yP(a, bl Y),
a,b,x,y

arises from a game. One way that some authors generalize the definition
of games is to allow for more general linear functionals—for example, by
replacing the restriction that V'(a,b,z,y) € {0,1} by V(a,b,z,y) € [0,1],
which amounts to a probabilistic interpretation of “how correct” an answer
is. Some authors study game biases, and allow functionals where the coeffi-
cients ¢ p 4,y are in [—1/2,+1/2].

Given a game, a density is called if the probability of it returning
an incorrect answer is 0, i.e.,

Vz,y, V(a,b,z,y) =0 = p(a,blz,y) = 0.

Note that if p is perfect, then E(p) = 1 no matter what the density is on
inputs. Conversely, if a density on inputs has full support, i.e., m(z,y) >
0, Vx,y, then any density with E(p) = 1 is necessarily perfect.

Much research has focused on whether or not a given game G has a per-
fect density that belongs to particular families of densities. These various
families of densities are the topic of the next section.

2.3. Local Densities. There are classical ways to produce conditional prob-
ability densities of the form p(a, b|z,y) using probability spaces and random
variables. However, there are other ways to produce such densities using
measurements of quantum systems in entangled states. In this section we
describe these various sets of densities and give their mathematical charac-
terizations.

Suppose that we are given a probability space (T, M, m), i.e., aset T, a o-
algebra M of subsets, and a non-negative measure m : M — RT satisfying
m(T) = 1. Given finite input and output sets I4,Ip,04,0p let f, : T —
Ou, v € Ip and gy : T — Op,y € Ip be measurable functions. Such
functions correspond to a choice of subsets, E, . := {t : fz(t) = a}, Fyp :=
{t : gy(t) = b} in M such that {E;, : a € Oa} and {F,; : b € Op} are
measurable partitions of T for all z,y. Then the density,

pla,blz,y) == m({t: fo(t) = a,gy(t) = b}) =
m(EpaNFyp) = /TXEz,a(t)XFy,b(t)dm(t)a

is called a local or classical density. We write Cj,. to denote the set of all
densities that can be obtained this way. Often for increased clarity we might
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write Cloe(na,np, ka, kp) where na,np, ka, kp are the respective cardinal-
ities of the sets I4,15,04,05B.

Note that if we fix z,y,t, then xg, ,(t)xF,,(t) is 1 for exactly one pair
(a,b) and 0 for all other pairs and so corresponds to the density of a deter-
ministic strategy. It follows that the given local density p(a,b|z,y), being
the integral, is in the convex hull in the vector space R"4"B*akB of the den-
sities corresponding to deterministic strategies. Since there are only a finite
number of deterministic strategies, we see that Cj,. is the convex polytope
of the densities coming from deterministic strategies.

Note that if we are given a local density as above and a game G =
(Ia,1,04,0p,V) with density 7, then

E(p)= [ > w(@y)V(fs(t),gy(t), z y)dm(t).
T

x7y7a7b

The local value of (G, ), denoted wioe(G, 7) is defined to be the supremum
of E(p) over all local densities p.

If we set ft(x) = f2(t) and gi(y) = gy(t), then for each ¢ € T, the pair
ft, g: is a deterministic strategy and E(p) is the average of the value of these
deterministic strategies over ¢t € T

Thus) wdet(g7 ﬂ-) = Wloc(g, 7T)'

The term local refers back to Einstein’s theory of ,
which was one attempt to explain the type of randomness that occurred in
quantum experiments [EPR35]. If Einstein’s theory had been correct, then
when two parties performed experiments in separated, physically isolated
labs on a shared quantum state, any density that they would be able to
produce would be local.

The mathematical physicist J.S. Bell was the first to make this argument
[Bel64]. He explicitly described the polytope of local densities in the case
that ng4 = np = k4 = kp = 2 and also described the strictly larger set
of densities that one could obtain if one assumed the standard model for
quantum entanglement. If we express this polytope as an intersection of
1/2-spaces, say

Cloc(nA,nB, kA; kB) == mij\il{(a7b7x7y) : Li(d,b,l’,y) S 1}7

then, up to some scaling these linear inequalities are called the Bell inequal-
1ties.

Later physicists were able to conduct experiments yielding densities that
lay outside of Bell’s polytope, i.e., violating one of the Bell inequalities,
verifying that entanglement is an actual phenomena. One of the earliest
such experiments/inequalities was due to [CHSH69] and is now known as
the CHSH inequality.

However, as we will soon see, there are various potential mathematical
models for describing quantum entanglement and deciding if these models
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all yield the same sets of densities or yield distinct sets of densities is one
place where the theory of these games has been extremely effective.

2.4. Multiplayer Games and Proof Verification. Although we will fo-
cus on two player games, there is a well-developed theory of cooperative
games with a larger number of players, along with applications using games
as a probabilistic means of checking proofs. See [ALM™198, AS98, BFLI1,
BGKWS88,CWY15].

3. MODELS FOR QUANTUM CORRELATIONS: TSIRELSON’S PROBLEMS

In the last section we mentioned that there were different models for
quantum densities without really addressing what these models are. We
remedy that problem here.

To motivate our discussions we need to first describe, in an axiomatic
manner, some of the foundations of quantum mechanics. Each quantum
mechanical system has a Hilbert space H with inner product (-|-) affiliated
with the system such that the unit vectors in this space are said to represent
the pure states of the system. We adopt the physicists’ convention that our
inner products are conjugate linear in the first variable and linear in the
second variable. If one wishes to conduct a quantum measurement that
has k outcomes, then there will be a set of k£ positive operators, P, ..., Px
satisfying 25:1 P, = I with the property that if the system is in the pure
state 1 € H, then the probability of observing outcome a,1 < a < k is given
by

(Y| Put).
Such a set of operators is called a positive operator-valued measure, or k-
POVM, for short.

By an (n, k)-POVM, we mean a collection {P,,:1 <z <mn,1<a<k},
where for each fixed x, the set {Py,:1<a <k} is a k-POVM.

Suppose that Alice and Bob have separated, isolated labs and they can
each perform one of ny4, respectively, np, quantum measurements and each
measurement has, respectively, k4 and kp outcomes. We let p(a,b|z,y)
denote the conditional probability density that Alice gets outcome a and
Bob gets outcome b, when they perform measurements x and y, respec-
tively. Such densities are also called quantum correlations and Tsirelson was
interested in mathematical descriptions of the set of all such conditional
densities.

It turns out that the axiomatic quantum theory allows for several possi-
ble mathematical descriptions of these sets of densities and Tsirelson was
interested in whether these were all the same [Tsi93]. So we start with the
possible descriptions.

The basic quantum model assumes that Alice’s and Bob’s labs are de-
scribed by finite dimensional state spaces, H 4, Hp and that the state of
their combined labs is given by a unit vector ¢ € Ha4 ® Hp. Alice’s and
Bob’s measurements are each given by an (n,k)-POVM, {E;, :1 < z <
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na, 1 <a<ka}land {F,;:1<y<ng,1<b<kp}, which means we have
families of positive operators such that

kA k'B
Z E;q=1I3,,Yz, and ZFyJ, = Iy ,, VY,
a=1 b=1

and

p(a, b"rv y) = <¢‘(E:c,a ® F ,b)w>'

We let Cy, or for definiteness, Cyq(na,np,ka,kp) denote the set of all
p(a,blz,y) that can be obtained as above, which we call the quantum cor-
relations or quantum densities. Note that since 0 < p(a,blz,y) < 1 that
we can always regard Cy(na,np,ka,kp) as a subset of the compact set
[0, 1]*anBkaks - Generally, we shall be interested in the case that ny = ng =
n and k4 = kp = k, in which case we shorten this to Cy(n, k).

A slightly more general model allows H 4 and Hp to be arbitrary Hilbert
spaces in which case we denote this larger set by Cys(na,np, ka, kp) where
the subscript stands for quantum spatial. In this case we are assuming that
the unit vector v belongs not just to the algebraic tensor product of the two
spaces, but in the completion of the algebraic tensor product in the inner
product, defined on elementary tensors by

(V1 @ P1]th2 @ ¢2) = (P1]th2)a, - (D1|d2)2p-

There is no reason that either of these sets needs to be closed. However,
a nice result that uses the theory of residually finite dimensional (RFD)
C*-algebras is that they both have the same closure and we set

Cqa(na,np,ka, k) == Cq(na,np, ka, k)~ = Cys(ng,np, ka, kp)™.

These are called the quantum approrimate correlations. For a proof of this
closure result see [JNPT11] or [Fril2].

An even more general model is to assume that the combined state space
of Alice and Bob does not decompose as a tensor product but instead that
it is a single Hilbert space H so that they each have POVM’s on this space,

{Bra:1<z<nal<a<ka} CB(H),
{(Fyp:1<y<np1<b<kp}C BH),

with the property that E, .Fyp, = FypErq, V2,y,a,b. We call this a com-
muting model. There is no requirement that Alice’s, or Bob’s, operators
commute among themselves for different inputs.

The set of all

p(a,blz,y) = (¢|Ezalypd),
that can be obtained in this manner for some commuting model and some
unit vector ¢ is denoted Cyc(na,np, ka, kp) and is called the quantum com-

muting correlations. This set is known to be closed but the proof needs some
C*-algebra theory. See [JNP*11].
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The explanation for this commuting hypothesis is that the outcome should
not depend on the order of applying their measurements. Note that in the
tensor cases we have that

Ex,a X Fy,b = (Ez,a & IHB)(IHA ® Fy,b) = (I’HA X Fy,b)(Ez,a & IHB>-

so it is a commuting correlation.
It is known that

Cq(”A;”Ba kA7kB) g Cqs(”Aa”Ba kA)kB) g
an(nAa ng, kA7 kB) - ch(nAa ng, kAa kB)

When people refer to , they mean one of these sets.
The work of J.S. Bell [Bel64], showed that Cj.(2,2,2,2) # C4(2,2,2,2).
Later experimentalists were able to produce quantum correlations that be-
longed to this larger set giving solid evidence that entanglement is an actual
phenomena that can not be explained by Einstein’s local hidden variable
theory.

In the case that ng = np = kaq = kp = 2, Tsirelson [Tsi93] proved that
these various sets of quantum correlations are all equal, and wondered if
this could be true more generally. The equality /nonequality of these various
pairs of sets became known as the

Operator algebraists became interested in the Tsurelson problems, when
the combined work of [JNP*11] and [Ozal3] showed that the Connes Em-
bedding Problem, had an affirmative answer if and only if

an(nAa npg, kAa kB) = ch(nAv ng, kAa kB)a

forallna,np, ka, kp. See [Fril2] for another proof of the results in [JNPT11].
We explain this more fully later.

Thanks largely to the theory of non-local games, and studying whether
or not games have perfect strategies in each of these set, we now know that
all of these sets are distinct when na,np, ka, kp are sufficiently large.

The first breakthrough was when Slofstra[Slo19a] created a game with a
perfect strategy in Cy, but not in Cj, thus showing that Cj is not closed.
Later, [KPS18] would show that Slofstra’s result implied that Cy, is also not
closed. Coladangelo and Stark[CS18] created a game with a perfect strategy
in Cys but not in Cy, giving another proof that Cj; is not closed.

The greatest breakthrough was when Zhengfeng Ji, Anand Natarajan,
Thomas Vidick, John Wright, and Henry Yuen [JNV*20] proved that Cy, #
Cyc, by constructing a game that has a perfect strategy in Cy., but no perfect
strategy in Cy,. Much of their work involves implicit steps, so very little is
known about how large na,ng, k4, kg must be for these sets to be separated,
and the game is also only given implicitly.

Questions still remain about equality /nonequality of these sets for small
values. For example, the work of [DPP19] shows that Cy(na,np, ka,kp)
is not closed for any na,ng > 5, ka,kp > 2, while the work of Tsirelson
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and Bell showed that Cy(2,2,2,2) is closed. Coladangelo [Col20] shows
Cy(4,4,3,3) is not closed.

It is believed that Cy(3, 3,2, 2) is not closed and there is even a functional
arising from Bell’s work, called the 13322 equation that is believed to not
attain its supremum on this set. There is a considerable literature on this
problem. See [PV10] for an introduction to this literature.

For each of the linear functionals defining the polytope Cioc(na,np, ka, k)
it is interesting to know how much larger its supremum can be over the set
Cy(na,np,ka,kp) than over Cj,.. There is considerable research on such
problems often under the heading, mazimal violations of Bell’s inequalities.

The work of [DPP19] shows that the geometry of the convex set Cy(5, 5, 2, 2)
is quite intricate.

Theorem 3.1 ([DPP19]). Let f\[ <t< ‘2[}1 and for 0 <a,b<1,1<
z,y <5 set
p(0,0|z,x) = t, p(0,1|z,z) = p(1,0]x,z) =0, p(1, 1|z, x) =1 —t,

and for x # vy, set
1 5)

p(1,1]z,y) = 3(1 )4 - 5).

Then p € Cyq(5,5,2,2) for all t in this interval, but p € Cy(5,2) only fort

rational.

Although all of these mathematical models for quantum correlations are
now known to be distinct, there is, currently, not much agreement on which
model is more correct for physics.

3.1. Nonsignalling Densities. Any set of nonnegative numbers p(a, b|z,y), 1 <

r<na, 1<y<np, 1 <a<ka, 1<b<kp,satisfying Y-, p(a, blz,y) =
1, Vz,y can be thought of as a conditional probability density. Such a den-
sity is called provided that

> pla,bla,y1) = > pla,bla,yo) and > p(a,ble1,y) =Y p(a, blza,y)
b b a a

for all x, x1, x2,y, Y1, y2. In this case there are well defined marginal densities
given by

palalz) : Zp a,b|z,y) and pp(bly) : Zp a,blz, y).

The set of all such non81gnalllng densities is denoted Cys(na,np,ka, kB)
and is clearly a closed set.

The reason for the name comes from the fact that if, instead, the marginal
density Y, p(a,blz,y) depended on y, then Alice can obtain some informa-
tion about which input y Bob has been given, violating the nonsignalling
hypothesis.
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It is straightforward to verify that all of the quantum correlations defined
above are nonsignalling. In fact, in the quantum commuting model one has

palalz) = (Y[Ezqtp) and pp(bly) = (Y[Fyp1)).

Thus, Cyc(na,np,ka, k) C Cps(na,np, ka, kp).

There are also games that have perfect strategies in C,,; and no perfect
strategy in Cy., showing that this containment is also strict. For example,
[CNMT07] gives examples of games arising from graph coloring that show
this distinction.

There is quite a bit of interest in studying perfect nonsignalling strategies
for games, see [BHTT23b, LMP*20, TT24] for recent work and references to
the earlier work in this area.

3.2. Quantum Values of Games. Given a game G = (I4,Ip,04,0p,V)
along with a prior density 7 on inputs, for t = loc, q, gs, qa, gc, ns we define
the corresponding value of the game to be

we(G,m) = sup Z m(x,y)V(a,b,x,y)p(a,blz,y).
peCi(namnp.kakB) o p oy
By the fact that the closure of C; and Cy are both Cy, and the various
containments, we have that

Wdet(ga 77) = wloc(gu 7T) < Wq(g7 77) = qu(g7 77) = wqa(ga 7T) < ch(g7 7T) < Wns(g7 7T)~

The term nonlocal game was first used in [CHTWO4]. It refers to the fact
that many games can have larger values if we allow any of these nonlocal
densities to be used as strategies. In some ways the term is shorthand for
games played with nonlocal strategies.

The CHSH game G with uniform density « is one such example. In fact,

Wioe(G, ) = 3/4 < wy(G, ) = cos*(m/8).

See [CHTWO04] for a proof. In fact, the CHSH game was reverse engineered
so that its expected value functional, L(a, b, z,y) = E(p) is the linear equa-
tion in the famous CHSH inequality.

3.3. POVM’s versus PVM’s. An (n,k)-POVM {P,, :1 <z <n,1 <
a < k} is called an (n, k)-PVM provided that every operator P, , is not just
positive but is a self-adjoint projection, i.e., Py, = Py, = Pia.

Note that since these are, currently, operators on a Hilbert space, we also
have that P, ,Pyp = 0,Va # b. This is not the case for abstract *-algebras,
a point that we shall return to later.

In [JNPT11] and in [Fril2] it is shown that each of the sets Cy, Cys, Cqas
and Cy remain unchanged if in their definitions (n, k)-PVM’s are used in-
stead of (n, k)-POVM’s. The fact that Cj,. remains unchanged follows from
the fact that characteristic functions of sets are projections in an abelian
algebra.

In the case of the tensor product models, this fact follows from a technique
used in mathematical physics called state purification or from the operator
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algebra technique of dilating a positive contraction to a projection. But the
proof for the case of Cy. is more sophisticated and relies on Boca’s theorem
[Boc91] on free products of completely positive maps. Recently, a much
simpler proof of Boca’s result has been given [DK17], which makes the Cy.
case more transparent.

In the remainder of this chapter, we shall use (n,k)-PVM’s in the def-
initions of quantum correlations. Note that in the case of local densities,
the characteristic functions of sets are projections in the abelian algebra of
functions, so local densities were already defined in terms of abelian (n, k)-
PVM’s.

3.4. Densities and States on Tensor Products of Free Group Alge-
bras. Given a (discrete) group G let C(G) denote the free vector space with
basis {ug : g € G}. Defining a product on C(G) by setting uy - up = ugn
makes C(G) into an algebra. Alternatively, one may think of C(G) as finitely
supported functions on G and define the multiplication by convolution. Set-
ting uy = u,-1 and extending conjugate linearly, gives C(G) the structure
of a *-algebra. This *-algebra is universal for unitary representations of G.
That is, given a Hilbert space H, let B(#H) denote the bounded linear oper-
ators on H and U(H) the group of unitary operators. Then p: G — U(H)
is a group homomorphism if and only if there is a unital *-homomorphism
p: C(G) — B(H) satistying p(ug) = p(g) for all g € G.

Briefly, we recall that to form the full group C*-algebra C*(G), one first
defines a norm on C(G) by setting

[w]| = sup [|p(w)],
p

where the supremum is over all unitary representations of G on a Hilbert
space, and then completes in this norm.

We also very briefly recall the tensor theory of C*-algebras. For more
details see [BO08] or [Con00]. Given two C*-algebras, A, B there are gener-
ally many norms that can be put on their algebraic tensor product so that
the completion is a C*-algebra. Among these many possible norms, there is
a unique minimal norm and that completion yields the C*-algebra denoted

By a theorem of Takesaki(see [BOO0S]), if we represent A C B(H) and
B C B(K), as operators on Hilbert spaces, then we can regard A ® B C
B(H ® K) and the completion of this algebra of operators is A ®i B. In
particular, Takesaki’s theorem tells us that this norm is independent of the
particular representations.

Given a Hilbert space £ and a pair of *-homomorphisms 7 : A — B(L)
and p : B — B(L) such that the set 7(.A) commutes with the set p(B), one
obtains a *-homomorphism 7 ® p : A® B — B(L) by setting 7 ® p(a ®b) =
m(a)p(b) and extending linearly. The max norm of an element u € A ® B
is defined as the supremum of |7 ® p(u)|| over all Hilbert spaces £ and all
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such pairs 7, p. The C*-algebra A ®y,q, B is the completion of A ® B in this
norm.

In the case of two groups, G, H we have that C(G) ® C(H) ~ C(G x H)
and the norm C*(G) ®@maz C*(H) ~ C*(G x H), i.e., it is the norm that
comes from all considering all unitary representations of G x H. While
the norm C*(G) ®min, C*(H) is the norm that comes from considering the
spatial tensor products of pairs of unitary representations, 7 : G — B(H)
and p: H — B(K).

If we let F(n, k) denote the free product of n copies of the cyclic group of
order k, then this is a group with generators u,, 1 < z < n satisfying u* = 1
and representations of this group are in one-to-one correspondence with a
choice of n unitaries U, € U(H) satisfying U¥ = I for all x.

As a *-algebra C(F(n, k)) is the free *-algebra with generators u, satisfy-
ing u® =1 for all x.

If we set ¢ = e2™/F and set

1 A
€xr.a = % ;(C_GU:B)]’

then these are the corresponding spectral projections for u, and

k
a
Uy = E q €x,a-
Jj=1

The set {ezq: 1 <2 <n,1<a <k} also generate C(F(n, k)) and this
group *-algebra can also be seen to be the free unital *-algebra with these
generators and relations:

2

ok
® €ra = ex,a - e:t,a?
k
d Za:l exza = 1’
® epq6.p=0,Va#b.

It is perhaps worth mentioning that this last relation is really necessary
because in a general *-algebra, a set of projections that sum to the identity
need not be orthogonal, except when k& < 3 [ST02].

We see that (n, k)-PVM’s correspond to *-representations of C(F(n,k)),
or equivalently, of C*(F(n, k)).

If we regard the generators of C(F(na,ka) xF(np,kp)) as {€z,a, fyp : 1 <
x<nyg, 1<a<kys 1<y<ng,1<b<kg}, then

C(F(na, ka) x F(np, kg)) = C(F(na, ka)) @ C(F(ng, kp)),

via the identification e;fyp, = €zq @ fyp. In this setting the quantum
correlations have the following characterizations.

Recall that a state s on a unital *-algebra is a linear functional that is
positive (that is, s(w*w) > 0 for all w), and unital (s(1) = 1). The work of
[JNPT11] and [Fril2] can be summarized as follows.
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Theorem 3.2 ([JNP*11], [Fril2]). (1) p(a,blz,y) € Cys(na,np,ka,kp)
if and only if the exist Hilbert spaces Ha, Hp, unitary representa-
tions pa : F(na,ka) — U(HA), pp : F(np, k) — U(HpB) and a
unit vector ¢ in the completed tensor product Ha @ Hp such that
plar bz, ) = (6|(F(ex0) ® FE(fy))¥).

(2) p(a,blz,y) € Cy(na,np,ka, kp) if and only if there exists a unitary
representation p : F(na,ka) X F(np, kp) — U(H) with H finite di-
mensional and a unit vector 1 such that p(a, b|z,y) = (Y|p(ex,afyp)?)

(3) p(a,blz,y) € Cqa(na,np,ka, k) if and only if there is a state s on
the minimal C*-tensor product C*(F(na,ka)) @min C*(F(np,kp))
such that p(a,blz,y) = s(eza @ fyp)-

(4) p(a,blz,y) € Cyec(na,np,ka,kp) if and only if there is a state s on
the mazimal C*-tensor product C*(F(na,ka)) ®maez C*(F(np,kB))
such that p(a,blz,y) = s(eza @ fyp)-

Alternatively, (2) can be replaced by the statement of (1) along with
the additional requirement that both Hilbert spaces are finite dimensional.
Also, (2) can be replaced by the same statement as (3), but with the extra
requirement that the Gelfand-Naimark-Segal representation of the state is
finite dimensional.

Also, (4) can be replaced by the same statement as (2), after removing
the requirement that H be finite dimensional.

Thus, (1), (2), and (4) can all be stated in terms of different types of
representations of F(na,ka) x F(np, kp).

The reason that the introduction of tensor products is used for (3) is
that it is defined as limits of densities from (2) and while limits of states
are again states, there is no good way to take limits of finite dimensional
representations of algebras and obtain a representation, without first passing
to the state induced by the representation.

Interestingly, while (2), (3) and (4) can be described in terms of states,
there is no natural way to describe (1) in terms of states on the minimal
tensor product.

For an interesting example of this difficulty, consider C'([0, 1])®minC([0, 1])
C([0,1]?). States on this C*-algebra are in one-to-one correspondence with
positive regular Borel probability measures on the unit square. We leave it
to the reader to determine which measures can be represented on a tensor
product of Hilbert spaces as in (1).

So the statement of the above theorem is rather fragmented since 3 of
the 4 sets can be naturally described in terms of representations, while a
different set of 3 of the 4 can be naturally represented in terms of states.

Thus, the different types of quantum correlations can be regarded as
the study of the images of different types of states when restricted to the
generators of the *-algebra of the group F(na,ka) X F(np, kp).

In this context, Tsirelson’s result on the equality of the various models for
quantum correlations for the case ng = k4 = np = kg = 2 can be deduced

1
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from the fact that the irreducible representations of the group F(2, 2) xF(2, 2)
are at most 4 dimensional. However, Tsirelson’s proof shows considerably
more as we will see in the section on XOR games.

If instead of looking at states, we consider linear functionals s on C(F(n4, ka)x
F(np,kp)) that are positive on w*w for w a linear combination of words
in the generators of some bounded degree d and consider the set of all
p(a,blz,y) = s(er,a ® fyp) obtained in this fashion, then one obtains a
decreasing sequence of sets whose intersection is Cgc(na, np, ka, kp). More-
over, each of the sets obtained in this fashion can be shown to be a spectra-
hedron. This, decreasing sequence of spectrahedra is referred to as the NPA
hierarchy and was introduced and studied in [NPAOS§].

3.5. The Problems of Connes and Kirchberg. Connes’ Embedding
Problem (CEP) [Con76] arose from the problem of trying to classify all
von Neumann algebras that are type I1;-factors. As the name suggests it
is a question about whether or not type II;-factors embed into a particular
11 -factor, described as an ultrapower of the hyperfinite 111 -factor, and de-
noted R¥. The CEP can equally well be restated as an embedding problem
for separable tracial C*-algebras, which is the approach that we shall present
here in order to avoid introducing the theory of von Neumann algebras.

Given a unital *-algebra A we call a linear functional 7 : A — C a

provided that it is a state (7(z*z) > 0 for all z € A and

7(1) = 1) and 7(zy) = 7(yz) for all z,y € A. Note that this last condition
is equivalent to the requirement that 7 vanishes on the linear span of the set
of all zy — yx, which we call commutators. A state is called provided
that 7(z*z) =0 = = =0.

The matrix algebra M, has a unique tracial state, which we denote by
tr,,. This tracial state is given by

1 n
tra((aij)) = > aj;.
j=1

There are many ways to describe the algebra R¥. We present the way
that is best for our purposes.

A non-principal ultrafilter limit is a non-zero multiplicative linear func-
tional w : /*°(N) — C with the property that w((a,)) = lim, a,, whenever
the limit exists. We set,

limay, := w((ay,)).
w
The name comes from the fact that they all arise from non-principal ultrafil-
ters on N. From a functional analysis perspective, non-principal ultrafilter
limits exist by the Gelfand-Naimark theorem applied to the abelian Banach

algebra (>°(N). See [Con00] for more.
Note that the £°°-direct sum of the matrix algebras,

A=CeMSMsP - ={A=A1 A& - :sup|Ay| < +oo},
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is a C*-algebra with product
A-B:=A1Bi®AsBy @ ---.
Given a non-principal ultrafilter w on N, the set

I, ={A=A180 A& - :limtr,(4,A,) =0},

is a closed two-sided ideal and hence there is a quotient C*-algebra denoted
RY = A/L,.

Setting
Tw(A+ 1) = limtr,(4,),

gives a well-defined tracial state on R¥. For more information, see [BOO0S].

Interestingly, if we assume the continuum hypothesis, then for any two
non-principal ultrafilters, these algebras are *-isomorphic. But without the
continuum hypothesis there are many distinct isomorphism classes. For
details see [CL15].

For those not familiar with ultrapower constructions, we would like to
say a few imprecise words about them, to provide intuition. Saying that
something “happens” in R¥ is equivalent to saying that it “almost happens
in matrix algebras with ever increasing accuracy”. For example, in group
representation theory there is the notion of a hyperlinear group. These
are groups with a sequence of maps into the group of unitary matrices of
increasing size that are in a certain sense becoming multiplicative in the
limit. Alternatively, these are more simply described as the groups for which
there exists a one-to-one homomorphism from the group into the unitary
group of R“. Voiculescu’s theory of matricial microstatesis another example
where a statement about something almost happening in matrix algebras is
equivalent to an exact statement in R“ and there is a conjecture about
matricial microstates that is equivalent to Connes’ Embedding Problem,
see [DP16] for a discussion.

Connes’ Embedding Problem asks if given a I1;-factor (M, 7) with a sep-
arable predual, does there always exist a *-homomorphism from M into R*.
Because the trace is always unique on a II-factor, this *~homomorphism
must in fact be trace preserving. By the general properties of ultrapowers
mentioned above, this version of CEP asks if the trace 7 “happens” in R¥,
and so not surprisingly, turns out to be equivalent to asking if 7 can be
approximated in a certain sense by the trace on matrix algebras.

To avoid detailed discussions of von Neumann algebras, we state an equiv-
alent reformulation in terms of C*-algebras.

: Does every separable, tracial C*-algebra
(A, 7) have a trace preserving *-homomorphism into (R“,7,) ? That is,
does there always exist a unital *-homomorphism 7 : A — R“ such that

7(a) = 1y(m(a)),Va € A?
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The equivalence of this stated version of CEP and the version involving
I1;-factors is not difficult for those with a background in von Neumann alge-
bras. The proof uses standard methods of passing between C*-algebras and
von Neumann algebras. One starts by taking the Gelfand-Naimark-Segal
representation of (A, 7) on a Hilbert space, taking the double commutant
and showing that it is a von Neumann algebra with a trace.

If (A, 7) has a trace preserving *-homomorphism into (R, 7,) for some
non-principal ultrafilter w, then it has a trace preserving *-homomorphism
into (R”?, 7g) for all non-principal ultrafilters 3, so whether or not the CEP
is true or false is independent of the continuum hypothesis. See [CL15].

Recall that a trace is called faithful provided that 7(z*z) =0 = z = 0.
It is enough to consider C*-algebras and faithful traces in the above and
when the trace is faithful such a 7 is necessarily one-to-one. This fact
justifies the term “embedding” in Connes’ embedding problem.

Because there is a unique trace on a [IIi-factor, the Connes’ Embedding
Problem is equivalent to requiring that for every separable, C*-algebra A
with a faithful trace there is a *-homomorphism(not necessarily trace pre-
serving) into R¥.

Kirchberg studied the question of whether or not there was a unique C*-
norm on the product of two free groups. If we let F,, denote the free product
of n copies of the infinite cyclic group (Z,+), then he proved the following:

Theorem 3.3 ([Kir94]). The following are equivalent:

(1) Connes’ Embedding Problem has a positive answer,

(2) C* (]Fn) Rmin C*(Fn) =C" (Fn) Qmaz c* (Fn)avn > 27

(3) there exists n > 2 such that C*(Fy,) Qmin C*(Fy) = C*(F,) Qmax
C*(F,).

We shall refer to the equality of these tensor norms as
, so that Kirchberg’s Problem and Connes’ Embedding Problem are
equivalent by Kirchberg’s theorem.

Once one knows this equivalence for the product of these free groups, it is
not difficult to see that one can use other free groups as well-in particular,
products of the groups of the form F(n, k). See [FKPT18, Proposition 3.3].

This leads us to the relation between Kirchberg’s problem and the sets
Cya and Cyc.

Theorem 3.4 ([JNP*11]). If Kirchberg’s Problem has an affirmative an-
swer, then

an(nA,nB, kA, kB) = ch(nA,nB, kA, kB), VTLA, ng, kA, kB-
The converse is due to Ozawa:

Theorem 3.5 ([Ozal3]). Kirchberg’s Problem has an affirmative answer if
and only if

Coa(na,np,ka, k) = Cye(na,np,ka, k), Vna,np,ka, kp.
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In [JNV120] it was shown that Kirchberg’s Problem, and hence Connes’
Embedding Problem, both have negative answers by producing a game with
a perfect strategy in C,. but no perfect strategy in Cy,. Note that for this
negative result, Ozawa’s result is not necessary only [JNP*11] is needed.

One key point is that [JNVT20] originally refuted Tsirelson’s Problem
and hence, by [JNP*11], Kirchberg’s Problem, and it is only the deep and
lengthy equivalence between Kirchberg’s Problem and Connes’ Embedding
Problem(CEP) that made it a refutation of CEP.

Later, when we discuss synchronous games and synchronous correlations,
we will see a more direct refutation of CEP, that does not use its equivalence
to Kirchberg’s Problem.

3.6. Algebraic Conditions for Perfect qc-Strategies. A. Bene Watts,
J. W. Helton, and I. Klep [BHK23| have given purely algebraic conditions
that determine if a game G = (I4,1p,04,0p,V) has a perfect qc-strategy.

Theorem 3.6. [BHK23, Theorem 1.1] Let F = {ezafyp : V(a,b,z,y) =
0} C C(F(na,ka) x F(np,kp)); let L(F) denote the left ideal generated by
F; let R(F) denote the right ideal generated by F; and let SOS denote
the cone generated by all elements of the form w*w. Then G has a perfect
gc-strategy if and only if

—1¢ L(F) +R(F) + 508,

The notation SOS is short for sum of squares. Given a general *-algebra
A, the SOS cone is often denoted A" and called the positive cone.

The method of proof of the above theorem is similar to the considerations
in the NPA hierarchy [NPAOS8], in that both involve restricting the degrees
of words in the generators.

3.7. Multipartite Correlations and Real Versus Complex Models.
There are similar definitions of these sets of conditional densities for multi-
partite situations. For example, in the tripartite case, Cq(na, ng, nc, ka, kg, kc)
refers to the densities of the form

p(av b, C|$a Y, Z) = <¢|(E:v,a ® Fy,b ® GZ,C)¢>7

where ¢ is a unit vector in the tensor product of three Hilbert spaces, Ha ®
Hp ® Hc. Densities in Cy. arise from a single Hilbert space on which all
the operators act and satisfy,

Ex,aFy,b = Fy,bEa:,aa E:c,an,c = Gz,cEa:,aa Fy,bGz,c = Gz,cFy,b

As with the bipartite case the densities that one obtains are the same if one
insists that the operators come from a POVM or a PVM. The densities in
Cye can also be realized as the images of states on the group F(na,ka) x
F(TLB, k‘B) X ]F(nc, k‘c).

Remarkably, the set of bipartite densities Cy(na,np, ka, ky) remains un-
changed if one insists that the underlying Hilbert spaces are real [RTW*21].
However, as soon as one passes to the tripartite case, then the requirement
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that the three Hilbert spaces all be real, leads to a strictly smaller set of
densities. In fact,

C2(3,3,3,2,2,2) C C4(3,3,3,2,2,2),

and there is a linear functional that is strictly smaller on the real set
[RTW*21]. Thus, even if one allows for real Hilbert spaces of arbitrarily
large dimension, there are densities in the larger set which use finite di-
mensional complex Hilbert spaces and can not be approximated using finite
dimensional real Hilbert spaces of arbitrarily high dimension.

For some time there was debate in the physics community about whether
the use of complex Hilbert spaces really were necessary to capture the quan-
tum world. Even Schrodinger considered complex Hilbert spaces as probably
unnecessary and referred to their use in quantum mechanics as unpleasant
[EPK11]. Recently, experiments have been conducted, using the above sep-
arating functional, to show that this larger value is attainable [LMW*22].
Hence, complex Hilbert spaces are necessary to model quantum phenomena.
Briefly, the real world is actually complex.

4. SYNCHRONOUS GAMES AND SYNCHRONOUS CORRELATIONS

A game G = (I14,15,04,0p,V) is called provided that T4 =
Ig, O4 = Op and

V(a,blz,x) =0,V € I4, a #b.

This last condition says that whenever Alice and Bob receive the same in-
put, to win they must produce the same output. It should be noted that
producing the same output is no guarantee that they win, i.e., it is possible
that some outputs are disallowed. Synchronous games were introduced in
[HMPS19).

For example, the CHSH game is not a synchronous game. If Alice and
Bob both receive 1 for their input, then their outputs, a,b, must satisfy
a+b=1-1, so to win they must produce different outputs.

Graph coloring games are a good family of synchronous games. These
games start with a graph and some fixed number of colors. The inputs are
the vertices of the graph and the outputs are colors. Alice and Bob are
each given a vertex and must produce colors. If they are given adjacent
vertices, they must produce a pair of distinct colors. If they are given the
same vertex, they must produce the same color. When they are given a pair
of vertices that are neither adjacent or identical, then they win no matter
what colors they produce. We will study this family of games later in detail.

To simplify notation for synchronous games we set I4 = Ip = I, Oy =
Op = O, and ny = ng = n, ka = kg = k and write the game as G =
(1,0,V).

Note that a perfect density for a synchronous game must satisfy

p(a,blx,z) =0, Yx,a #b.
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Densities with this property are called synchronous densities.

Note that if f, g : I — O is a pair of functions that yield a perfect strategy
for a synchronous game, then necessarily f = g.

Remarkably, this simple constraint on densities, allows us to reduce states
on tensor products to traces on a single algebra. The connection between
synchronous correlations and traces was first made by S. Severini, D. Stahlke,
I.G. Todorov, A. Winter and the second author [PSST16] in their work on
graph coloring games. The definition of synchronous games was formally
introduced in the work of J.W. Helton, K.P. Meyer, M. Satriano and the
second author [HMPS19], partially as a means to explain what was special
about the graph coloring games.

We write Cf(n, k) for the subset of synchronous densities in C¢(n,n, k, k)
for t =loc, q, qs, qa, gc.

The game constructed in [JNV120] with a perfect qc-strategy but no per-
fect qa-strategy, is actually a synchronous game. We will see that studying
synchronous games leads directly to results about traces, and hence, to a
negative solution to Connes’ Embedding Problem that does not use Kirch-
berg’s equivalence. The connection between synchronous correlations and
traces was first made by the S. Severini, D. Stahlke, I.G. Todorov, A. Winter
and the second author [PSST16].

Theorem 4.1 ([PSS*16]). (1) p € Ci.(n, k) if and only if there exists
a unital C*-algebra with a tracial state (A, 7) and an (n,k)-PVM
{eza:1<2<n,1<a<k}in A such that

p(a, b‘x7 y) = T(ew,aey,b)'

(2) p € Cy(n, k) if and only if in the above representation we can assume
that A is finite dimensional.

By the GNS theorem, statement (1) is equivalent to requiring that there
is a tracial state 7 on C(IF(n, k)) with p(a,blz,y) = T(ez,aeyp)-

The remaining cases were described in work of S. Kim, C. Schathauser
and the second author [KPS18].

Theorem 4.2 ([KPS18)). (1) Cgs(n, k) = Cy(n, k), n, k,
(2) Cgu(n, k) is the closure of the set Cj(n, k),
(3) pla,blz,y) € Cg,(n, k) if and only if there exists an (n,k)-PVM
{eza:1 <2 <n,1<a<k}CRY such that

p(a7 b‘{L’, y) = Tw(ex,aeyvb)'

A much clearer proof of (2) is given by T. Vidick [Vid22].

It is important to note that if we start with an (n,k)-POVM {p,,} in a
tracial C*-algebra (A, 7) and set p(a,b|z,y) = T(Pr,apyp) then this density
need not be synchronous, since p; op,» need not be 0.

One consequence of (2) is the following:
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Theorem 4.3 ([KPS18,DP16]). Connes’ embedding problem has a positive
answer if and only if

Coa(n, k) = Cp(n, k), Vn, k.

Of course to show that the embedding problem has a negative answer we
only need the “only if” part of the above result. A very clean direct proof
of this implication is given by A. Frei [Fre22].

4.1. The Fundamental Orthogonality Relations of a Synchronous
Game. Let G = (I,0,V) be an n-input, k-output synchronous game. We
say that an (n,k)-PVM {ezq : © € I,a € O} in an abstract *-algebra
satisfies the (FOR) of G provided that:

V(a,b,z,y) =0 = egqeyp = 0.

Note that the synchronous condition implies e; qe;, = 0,Va # b, which
while automatically true for an (n, k)-PVM of operators on a Hilbert space
is not true for general *-algebras, except for k& < 3. Indeed there exist *-
algebras with 4 elements p1, ps, p3, p4 satisfying p? =p; =p; and p; +p2 +
p3 +pa = 1 and yet p;p; # 0 for ¢ # j.

To cement these ideas, suppose that we consider the game of trying to k
color a graph on n vertices. For this game we seek elements {e; ,: 1 <z <
n, 1 <a <k} in a *-algebra. The FOR relations are that:

N
)eﬂva_ xa ewza’vza

(1

(2) exatep =0, a #b,

(3) Za | €xa = 1,Vx,

(4) and whenever (z,y) is an edge in the graph, e; €y, = 0,.
Notice that the first three relations are the relations needed to be an (n, k)-
PVM, and the 4th relation is determined by the particular graph.

Recall that a tracial state 7 is called faithful if 7(2*2) =0 = 2z = 0.

Given a C*-algebra with a tracial state (A, 7) it is readily checked that

T :={z:7(z"2) =0},

is a closed 2-sided ideal and that 7 defines a faithful tracial state on the
quotient C*-algebra A/Z. Using this fact and the above results one obtains:

Theorem 4.4. Let G = (I1,0,V) be a synchronous n-input k-output game.
Then:

(1) G has a perfect loc-strategy if and only if there exists an (n,k)-PVM
in an abelian C*-algebra satisfying the FOR for G,

(2) G has a perfect g-strategy if and only if there exists an (n,k)-PVM
in a matriz algebra satisfying the FOR for G,

(3) G has a perfect qa-strategy if and only if there exists an (n,k)-PVM
in RY satisfying the FOR for G,

(4) G has a perfect qc-strategy if and only if there exists an (n,k)-PVM
in a tracial C*-algebra satisfying the FOR for G.
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Since this result is not in the literature, we sketch the proof. Note
that if p(a,b,2,y) = 7T(esaeyyp) is a perfect strategy for the game, then
Via,b,z,y) =0 = 0 = 7(ezayp = T((ex,alyp)* (€z,ayp)). Soif 7is a
faithful trace, then e;,e,, = 0 and we have that the FOR are met in the
quotient algebra A/Z. The proof of (i) follows from observing that if A is
abelian, then A/Z is abelian. The proof of (ii) from the fact that if A is
finite dimensional, then A/Z is finite dimensional and so a direct sum of
matrix algebras and the FOR’s must be met in each matrix algebra. The
proof of (iii) follows from observing that given 7 : 4 — R“, since 7% is
a faithful trace, the elements 7(e, ) satisfy the FOR. The proof of (iv) is
similar.

The result of [JNVT20] now leads to:

Corollary 4.5. There is an FOR for a synchronous game that can be sat-
isfied in a tracial C*-algebra that is not satisfied by any (n,k)-PVM in R“.

This is a somewhat stronger negation of the Connes’ Embedding Problem.
It shows that the set of FOR’s that can be satisfied in R* is a smaller family
than the FOR’s that can be satisfied in a tracial C*-algebra.

Paddock and Slofstra [PS23] have constructed a synchronous game whose
FOR can be satisfied in a C*-algebra but not in a tracial C*-algebra.

We now have synchronous games that separate the FOR’s that can be
satisfied in abelian C*-algebras, matrix algebras, R%, tracial C*-algebras,
and arbitrary C*-algebras.

These results suggest that studying “satisfiability of FOR’s” might lead
to improved understanding of Connes’ Embedding Problem and, via Kirch-
berg’s work, of tensor norms on products of free group algebras.

4.2. The Algebra of a Synchronous Game. The algebra of a synchro-
nous game was introduced in [HMPS19]. It is best thought of as the universal
*_algebra for the FOR of the game.

Recall that C(F(n,k)) has generators {e;, : 1 < z < n,1 < a < k}
that form an (n,k)-PVM with the property that e,q.e,, = 0,Va # b.
Moreover, it is the “universal” *-algebra for an (n, k)-PVM satisfying this
extra conditions. By this we mean that if one has a unital *-algebra A
with elements {fz, : 1 < 2z < n,1 < a < k} forming an (n,k)-PVM
satisfying fyofzp = 0,Va # b, then there is a unital *-homomorphism
7w : C(F(n,k)) - A with w(ez.q) = f1.0, V2, a.

Given a synchronous game G = (I, 0, V') with n-inputs and k-outputs we
define the *-algebra of G, denoted A(G) to be the quotient of C(F(n,k)) by
the 2-sided *-ideal J(G) generated by

{em,aey,b : V(a’ b, , y) = O}
Note that because this is a *-ideal whenever V' (a,b,z,y) = 0 then e, pe, o €

J(G) even though it is not necessary that V' (b, a,y, ) = 0. The reason that
this is desirable is because for perfect strategies

V(a, b, Z, y) =0 = 0= p(av b|$a y) = T(ex,aey,b) = T(ey,bez,a) = P(b, a|y, l‘)
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In particular, we have that if p(a,b|x,y) is a perfect strategy for G =
(I,0,V) then it is also a perfect strategy for the game G = (1,0, XA/) where
‘A/(a, b,x,y) =V(a,b,x,y)-V(b,a,y,z). Indeed, some authors prefer to make
one of the conditions in the definition of synchronous to be that the “rules”
are symmetric, meaning that V(a,b,z,y) = V(b,a,y, x).

Note that we have changed notations a bit. It is not the e; , that satisfy
the FOR of the game, but rather their images é;, = ez + J(G) in the
quotient.

To fix these ideas, suppose that we consider the game of trying to 4 color
the complete graph on 5 vertices. Recall that “complete” means that every
pair of vertices is connected. Let us write é, , for the image of the element
ez, in the quotient A(G) = C(F(5,4))/J(G). So the algebra of this game
A(G) is generated by elements {é;,: 1 <z <5, 1 <a < 4}. The relations

are that:

(1) éﬂﬂya = é;,a = éz’z,a’ \V/IL‘, a,
(2) égazp =0, a#b,
(3) Mgy bra = 1,Va,

(4) éx,aéy,a = O, €T 7& Y.
If we set p, = Zi:l €x,q then p, = p, and

5 5
2 Z N Z 9
Do = €x,a€y,a = ex’a = Pa-
x=1

z,y=1

So each p, is a self-adjoint idempotent in the *-algebra. However,

4 5 4
Zpa = Zzé:p,a =5-1
a=1 z=1a=1

So this algebra contains 4 “projections” that sum to 5 times the iden-
tity. From this it is clear that this algebra, if it is non-zero, i.e., J(G) #
C(F(5,4)), cannot be represented as operators on a Hilbert space. Never-
theless, in [HMPS19] it is proven that J(G) # C(F(5,4)). So this gives an
example of a (non-zero) game algebra that cannot be represented as opera-
tors on a Hilbert space.

The utility of the game algebra is that determining if games have perfect
strategies becomes a question about representations of the algebra. Restat-
ing the above results we have the following.

Theorem 4.6 ([HMPS19]). Let G be a synchronous game. Then

(1) G has a perfect deterministic strategy if and only if A(G) has a non-
zero multiplicative linear functional,

as a perfect g-strateqy if and only if there is a unital *-homomorphism
2) Gh t g-strategy if and only if there tal *-h hi

of A(G) into some matriz algebra,

(3) G has a perfect qa-strategy if and only if there is a unital *-homomorphism

of A(G) into R*,
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as a perject qc-sirateqgy 1f ana onLy 1, ere 1s a unitat “-nomomorpnism
4) Gh fect qe-strategy if and only if there i ital *-h hi

of A(G) into some unital C*-algebra with a tracial state.

In [HMPS19] examples were given of synchronous games for which J(G) =
C(F(n,k)) and so A(G) = 0 and, hence, can have no perfect strategies of
any of these types. The example above is of a game for which A(G) #
0 and yet this unital *-algebra had no unital *-homomorphisms into the
bounded operators on any Hilbert space. This will be discussed more fully
in the section on graph coloring. Paddock and Slofstra [PS23] gave the first
example for which A(G) had a unital *-homomorphism into a unital C*-
algebra but G had no perfect qc-strategies and hence it could never have a
unital *-homomorphism into a unital C*-algebra with a trace.

Bene Watts, Helton, and Klepp also give a nice purely algebraic charac-
terization in terms of *-algebras for when a synchronous game has a perfect
qc-strategy.

Theorem 4.7 ([BHK23]). Let G = (I,0,V) be a synchronous game with
n-inputs and k-outputs, let

F ={exatyp: V(a,b,x,y) =0 or V(b,a,y,x) = 0},

let L C C(F(n,k)) be the left ideal generated by F, let R C C(F(n, k)) be the
right ideal generated by F, let C = span{zw—wz : z,w € C(F(n,k))} denote
the linear span of all commutators, and let SOS denote the cone generated
by all z*z,z € C((F(n,k)), i.e., the positive cone of the *-algebra. Then G
has a perfect qc-strategy if and only if

~1¢ L+R+S0S+C.

This beautiful result reduces the problem of determining if there exists
a perfect qc-density to a purely symbolic calculation without the need to
actually produce a density or a representation into a tracial C*-algebra. It
also shows the asymmetry between the problem of checking a proof that a
density does not exist, versus checking a proof that a density does exist.

4.3. Synchronous Values of Games. For a synchronous game G = (I,0,V)
with n inputs and k outputs and density 7 it is natural to study synchro-
nous values of the game. By this we mean for t = loc, q, qa, gsqc, ns, the
quantities,

wi(G,m) :=sup{ Y (x,y)V(a,b,,y)p(a,blz,y) : p € C;(n, k)}.
a,b,x,y
By the results of [KPS18],
wg(G,m) = wgs(G, ™) = wga (G, 7).

Synchronous values of games were introduced in [DP16] and are studied
extensively in [HMN24].

The value wj (G, 7) is also obtained by taking the supremum over all
deterministic strategies f,g : I — O such that f = g. For this reason,



26 S. J. HARRIS AND V. I. PAULSEN

some quantities, such as the Maxcut of a graph, are shown to be related to
the synchronous deterministic values of a game as opposed to the ordinary
value. This viewpoint lends itself more readily to quantum analogues of such
quantities, by considering the corresponding synchronous quantum value of
the same game.

For example, [HMNT24] uses this viewpoint to develop a quantum version
of the Maxcut of a graph, which they prove is the quantum synchronous
value of a game, and using results of Tsirelson show that this quantum
Maxcut is solvable by an SDP, as opposed to the classical Maxcut which is
an NP-hard problem.

If one sets

R = Z m(z,y)V(a,b,x,y)es ety pera € C*(F(n,k)),

a,b,z,y
then [HMN™24] proves that
wye(G, ) = sup{7(R) : T a tracial state on C*(F(n, k))} = inf{||R-W| : W € C},
where C is the span of the commutators and the norm is in C*(F(n, k)).

4.4. Multipartite Theory of Synchronous Densities. There is very
little literature on synchronous games for three or more players. One reason
is the following. Suppose that we have a three person game with common
input set I4 = Igp = Ic with n elements and a common output set O4 =
Op = O¢ with k elements. We could define “synchronous” to mean that
whenever any pair of players receive the same input, that pair must give the
same output, or a somewhat weaker condition is that when all three players
receive the same input, then they must all three give the same output. A
perfect density p(a,b,c|z,y,2) € Cye(n,n,n, k, k, k) for this weaker version
of synchronous satisfies

p(a,b,clx,z,x) =0 unless a = b = c.

It turns out that any such density p is a local density. Because this result is
not in the literature, we sketch a proof here.

Suppose that one has three (n, k)-PVM’s {E; o}, {Fy s}, {G-,.} on a Hilbert
space H such that

Ea:,aFy,b = Fy,bE:Jc,aa E:v,an,c = Gz,cE:Jc,aa Fy,bGz,c = Gz,cFy,ba
and a unit vector ¢ such that

p(a7 b7 C|.T, y') Z) = <¢‘Ex,aFy,bGz,c¢>v

that satisfies the above “synchronous” condition. Without loss of generality
we can assume that H is the cyclic subspace generated for the algebra gen-
erated by the three PVM’s applied to ¢. Using the Schwarz inequality and
the fact that

1= Zp(a7 a, a‘$7 z, .73) = Z<¢|Ex,an,an,a¢>a

a
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one shows that E; ,¢ = F, 0¢ = Gy q¢. From this one shows that H is the
cyclic subspace for the algebra generated by {G. .} applied to ¢ and that
consequently, F, , = Fy 4, Vx,a. Hence, B, (Ey, = Ey,E, , and so we have
a local density.

A similar result holds for more than three players. Thus, C} .
Cga = Cye as soon as we are tripartite or more.

However, the synchronous nonsignalling densities are still larger than
the local densities even in the multipartite case and there is some inter-

est in studying values of synchronous ns-strategies for multiparty games.
See [BHTT23b, LMP*20, TT24].

4.5. Beyond Synchronous. There have been various families of games
introduced with properties that reflect some of the properties of synchronous
games—in particular, the aptly named mirror games and imitation games.
See [BHTT23b, LMP*20].

We have a nice general theory of games but currently we have only pre-
sented one game. In the following sections we turn our attention to the
many families of games that have been studied extensively.

5. XOR GAMES

A game G = (I4,15,04,0p,V) is called an provided that
O4 = Op = Zo, the binary field and there is a function

f:IAXIB—>Z2,

such that

Via,b,z,y) =1 <= a+b= f(z,y),
with arithmetic in Zo. For example, the CHSH game is the XOR game with
Iy =1Ip =7y and f(x,y) = zy.

This family of games were introduced by Cleve, Hoyer, Toner, and Wa-
trous [CHTWO04], who were the first to study nonlocal strategies for games.
They also realized that the inequality introduced by [CHSH69] to separate
quantum densities from local densities could be interpreted as the g-value
of a game, which they dubbed the CHSH game.

It is not difficult to show that given an XOR game G with density 7 that
the various values of the game are all attained by densities that satisfy

pa(0z) = pa(llz) = pp(0ly) = pa(1ly) = 1/2.

Moreover, Tsirelson’s work [T'si93] implies that if such a density p(a, bz, y) €
Cye, then p(a,blx,y) € C,4. For this particular interpretation of Tsirelson’s
work see the online lecture notes [Paul6]. Hence, for XOR games one has
wfl(g7 ﬂ-) = wqc(gv ﬂ-)'

Another remarkable result from [CHTWO04] is that the quantum value of

an XOR game is given by an SDP. In particular, they prove the following.
Let |[I4| =n, |Ig| = m and define Ag » € M, ,, by

Agr = (1)) (z,y),
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and
Bgr = (Agw Ag’”) € My tmnim-
Consider the elliptope, ’
Enim ={P € Myt : diag(P) = I, and P is positive semidefinite }.
Then the results of [CHTWO04] imply that
we(G,m) = wge(G,m) =1/2+1/2sup{Tr(BgP) : P € Eyim }-

For a proof of this restatement of [CHTWO04] see [HMN'24, Theorem 4.7].
An XOR game is synchronous provided I4 = Ip and the defining function
f satisfies f(z,z) =0, Vo. In [HMN™24] it is shown that for such games

wy(G,m) = we (G, m) =1/2+1/2 sup{Tr((Ag ~ + ATJ)P) : P eé&,l,

and this result is used to give examples of synchronous games with w; (G, m) <
wq(G, ™). Thus for synchronous games, the optimal strategy might not even
be synchronous.

6. LINEAR CONSTRAINT SYSTEM GAMES

These games had an enormous influence on the development of the theory
of nonlocal games.

Recall that if p is a prime number then the set of integers modulo p,
Z,, equipped with addition modulo p and multiplication modulo p is a field
denoted Z,. The most familiar of these is the binary field Zy = {0,1}, where
1+1=0.

Suppose that we are given a system of n linear equations in m variables
over Zp:

m
Zai,jxj = bl', 1< < n,
j=1
or in matrix vector notation,
AZ =b.

There are two versions of the . The original
version is not synchronous and later a synchronous game was introduced
that has since been shown to be equivalent to the original game, in a sense
that we will make precise below.

First we discuss the non-synchronous game. In this game Alice is given
an equation, i.e., I4 = {1,...,n} and Bob is given a variable, Ip = {1, ..., m}.
Alice must return values for each of the variables in her equation and Bob
must give a value to his variable. They win if Alice’s variable values satisfy
the equation that she was given and if the value that Bob assigned to his
particular variable is the same as the value that Alice gave to that variable.
If Bob’s variable is not one of the variables that appears in Alice’s equation,
then they automatically win.
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Note that in this description of the game, Bob’s output set is O =
Z, while Alice’s output set is a union of vector spaces over Z, with the
dimensions depending on the number of non-zero entries in her row. An
alternate description that is a bit fussier to state, but in the end tidier, is
to demand that when Alice receives the i-th equation, she returns a vector
in Z;" that satisfies her equation and is zero for each j such that a;; = 0.
As before, for the players to win, Bob’s variable value must be equal to the
corresponding entry in Alice’s vector, except when a;; = 0, in which case
the only winning requirement is that Alice’s vector satisfy the equation and
is 0 in the appropriate entries.

We shall denote this game by LC'S(A, b), with p understood. In the binary
case, i.e., p = 2, this game is sometimes denoted BC'S(A, 5)

It is not difficult to show that this game has a perfect deterministic strat-
egy if and only if the system of equations has a solution.

The most famous and earliest studied of these games is Mermin’s magic
square, which is the system of 6 equations in 9 variables over the binary
field. If we imagine the variables as arranged into a 3 x 3 array, then the
6 equations are that each row sums to 0, while each column sums to 1. If
we first sum all rows, then we see that the sum of all variables must be
0, while if we sum all columns, then we see that the sum of all variables
must be 1. From this it follows that this game has no perfect deterministic
strategy and so no perfect local strategy. However, it does have a perfect
g-strategy [Mer90, CM14, CLS17].

Thus, in some quantum sense these equations have a solution over the
binary field. There are still open questions about Mermin’s Magic Square
game over Zj, for primes other than 2. For example, it is not known if these
games have perfect qc-strategies if and only if they have perfect g-strategies.

Slofstra [Slo19a,Slo19b] proved that Cy, and Cys are not closed using linear
constraint system games.

For this game there is a group I'(A4, g), called the solution group of the
game, defined by generators and relations. The representation theory of this
group determines whether or not this game has perfect strategies.

The solution group has m + 1 generators, denoted Uy, ..., Uy, J and rela-
tions given as follows:

e UV'=..=U} = JP =1, where 1 denotes the group identity,
e for each 1,
Ut U™ = J%,
o if for some i, a; ja; # 0, then U;U;, = U, Uj,
o U;J = JU; for all j.

The role of the solution group is developed in [CM14,CLS17,CS17,Slo19a,

Slo19b]. In particular, [CS17] extended the theory from the case p = 2 to

—.

general primes. For example, LC'S(A,b) has a perfect g-strategy if and

—.

only if there is a unitary representation 7 of I'(A, ) on a finite dimensional
Hilbert space with the property that 7(J) = wl where w = >/,
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The synchronous game syncLCS(A, l;) is defined as follows.

Alice and Bob’s inputs are I = {1,...,n}, i.e., the label of an equation,
and their outputs are O = Z;" vectors. If Alice receives i; and Bob receives
i9 and they return vectors v = (v1,...,vy) and w = (wq, ..., wy,) then they
win if and only if:

o >y ai v =b;y and YT a, jwj = by,

o aih]’:O — vj:Oandaim:O — ’UJj:O,

® Qi Qi 5 75 0 = Vj = Wj.
Notice that these rules do imply that if ;1 = 49, i.e., they both receive the
same input, then v = w, so that the game is synchronous.

This synchronous game was first introduced in [KPS18] for the case p = 2
and extended to general primes in [Gol21].

Note that if we let (J —wl) C C(G) denote the 2-sided ideal in the *-
algebra of the group generated by the single element J — w1, then w is a
unitary representation of I'(A, b) satisfying 7(.J) = wl if and only if the ex-
tension of 7 to the group algebra vanishes on this ideal. Thus, the condition

=,

m(J) = wl on a unitary representation 7 of I'(4,b) needed for the game

=,

LCS(A,b) to have perfect strategies, corresponds precisely to the unital

=,

*-homomorphisms of the *-algebra quotient C(I'(A,b)/(J — wl).
A. Goldberg [Gol21, Theorem 4.1] proves that the algebra of the synchro-

—, -,

nous game syncLCS(A,b) is unitally *-isomorphic to C(I'(A,b)/(J — wl).

-,

Consequently, the game LCS(A,b) has a perfect t-strategy if and only if

-,

syncLCS(A,b) has a perfect t-strategy. The earlier results about perfect
t-strategies for LC'S(A, E) can be derived from this fact and the general the-
orem about conditions for perfect strategies for synchronous games. In the
paper [KPS18] some of these equivalences for perfect strategies of the two
versions of the game had been shown for the binary case.

Goldberg’s result was one of the first results to really use the algebra of
a synchronous game to clarify and extend other results. For a further study
of *-isomorphism of game algebras see [Har22].

It is still unknown if these games can have perfect qc-strategies without
perfect qa-strategies, i.e., if the separation of Cy, and Cy. can be achieved
with a linear systems game.

6.1. Linear equations over Z. Given a system of equations over Z, AZ = b
and a bound —N < z; < +N,Vj(so that the output sets are bounded),
one can consider an equation-variable game and a synchronous equation-
equation game in parallel with the above constructions. Very little is known,
including if the two versions of the game are “equivalent” in some appropri-
ate sense and how these games are related as IV varies.

6.2. Other Systems of Equations. Given n functions, f; : Z;' — Z;,1 <
it < n and by,...,by, € Z, one can study games for solving the system of
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equations, fi(z1,....,xm) = bj, 1 < i < n, as above there is an equation-
variable and a synchronous equation-equation game that can be introduced.
For the most complete work in this direction see the paper of Paddock and
Slofstra [PS23].

Satisfiability of Boolean equations is directly related to logic and the fact
that more equations are “quantum satisfiable” is related to different logics.
For some work in this direction see [VW15, GH23]. There is also a huge
literature in computer science on various quantum notions of hardness of
proof and this played a central role in the negation of the CEP [JNV*20].

7. GAMES BASED ON GRAPHS

By a we mean a pair G = (V, E) where V is a, generally, finite set
called the vertices and E C V x V is a subset called the edges satisfying:

e (loopless) (z,z) ¢ E for any z € V,
o (undirected) (z,y) € E = (y,x) € E.

We assume that the reader has some familiarity with concepts from graph
theory such as colorings, cliques, independent sets and the corresponding
notions of the chromatic number, clique number, and independence number,
of a graph.

In this section we discuss synchronous games for these concepts. All of
these quantities can be determined by graph homomorphisms, so we begin
there.

7.1. The Graph Homomorphism Game. Given two graphs G; = (V;, E;),i =
1,2 a homomorphism from G;1 to G is a function f : V; — Vo with the
property that if (z,y) € E; then (f(x), f(y)) € Ea. We write G; — G2 to
indicate that there exists a graph homomorphism from G; to Gs.

Graph homomorphisms are convenient for capturing many of the parame-
ters studied in graph theory. For instance, if K} denotes the complete graph
on k vertices, i.e., every unequal pair is an edge, then it is not hard to see
that G has a k-colouring if and only if G — Kj. Thus, the chromatic number
X(G) is the smallest k for which G — Kj.

Similarly, a clique in G is a subset of vertices such that every pair is
connected by an edge. It is not hard to see that G has a clique of size k if
and only if K — G and the cligue number, w(G), is the largest such k.

A set of vertices in G is called independent if they contain no edges. Let
G¢ denote the complement of G, i.e., the graph with the same vertices, but
with (z,y) an edge in G¢ if and only if z # y and (x,y) ¢ E. Thus, G has
an independent set of size k if and only if K — G° and the independence
number, a(G), is the largest such k.

The , Hom(G1, G3), is the synchronous game
with input set V; and output set V5 and losing tuples (a, b, x,y) given by
the set

{(a,b,z,y) : (x,y) € Eq,(a,b) ¢ B2} U{(a,b,z,z):x € Vi,a # b}.
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Note that if  # y and (x,y) is not an edge, then (a,b,z,y) is a winning
tuple for all a, b.

It is not hard to see that a perfect deterministic strategy for this game is
an actual graph homomorphism.

For t = loc, q, qa, qc,ns, we write G 4 G2 to indicate that there is a
perfect density for Hom(G1,G2) in C;. In particular,
loc
G1 — G2 <= G1 — Ga.
These so-called quantum graph homomorphisms are known to be preserved
under compositions, i.e., given graphs G; = (V;, F;) on n; vertices for i =
1,2,3 we have

G Gy and Go 5 Gz — G 5 Gs.

This follows from two facts. First if p(a, b|z,y) € Cf(n1,n2) and ¢(c, d|a,b) €
Cf (ng, 713) then

r(c,d|z,y) = Zq(c,d\a,b)p(a,b[x,y) € Ci(n1,n3).
a,b

Moreover, if p is a perfect t-strategy for Hom(G1,G2) and ¢ is a perfect
t-strategy for Hom(G2, G3), then r is a perfect t-strategy for Hom(G1, G3).
For t = loc, q, qa, qc, ns, the corresponding quantum chromatic numbers,

Xt(G), are defined to be the smallest k for which G Y Ky. There are
also similar definitions via quantum graph homomorphisms for the quantum
clique number, wy(G), and quantum independence number, ay(G). For an
introduction to this literature see [CNM*07, MR12, MRV15, MR16a] and
the references therein.
Borrowing from above we call Hom(G, K},) the k-coloring game, Hom(K}.Q)
the k-clique game, and Hom(Ky, G¢) the k-independent set game.
The game Hom(G, K}) is the graph coloring game that we discussed in
earlier sections.
In [MR12] it is shown that G ™3 K, and hence, yns(G) < 2 for all graphs.
There is a fairly extensive literature on each of these concepts, often
seeking quantum versions of classical results from graph theory.
There are examples of graphs known for which a4(G) # 0y (G) [KPS18]
giving yet more examples of games separating Cj; from Cyq.
Given a graph G = (V, E), if one lets G, denote the one-point suspension
of G, i.e., Goo = (VU 00, Ey) where
o (r,y) € E = (z,y) € E,
e eV = (z,00),(00,z) € Ex,

then it is clear that x(Gs) = x(G) + 1. Mancinska and Roberson [MR16b)]
construct a graph with x,(Gs) = Xq(G). In particular, x4(Goo) < X(Goo),
and this is the smallest known example of a graph separating x and x4.
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7.2. Universality of the 3-coloring Game. The first author [Har24]
proves that the graph 3-coloring game is in a certain sense universal for
all synchronous games, strengthening previous work of Ji [Jil3] for quan-
tum finite-dimensional strategies. We make this precise below. Define two
synchronous games G; and Gy to be weakly *-equivalent if and only if there
exist unital *-homomorphisms from A(G1) to A(G2) and from A(Gs2) to
A(G1). This can be easily seen to be equivalent to [Har24, Definition 2.2].
It is easy to see that weak *-equivalence is an equivalence relation on the
set of synchronous games.

In [Har24, Proposition 2.3] it is shown that if two synchronous games, G;
and Gy are weakly *-equivalent, then for ¢ = loc, q, qa, gc,

G1 has a perfect t-strategy <= Gy has a perfect t-strategy.

The first author proves [Har24, Theorem 4.5] that each synchronous game
is weakly *-equivalent to a graph 3-coloring game. In fact, given a synchro-
nous game G an explicit graph G is constructed so that G and Hom(G, K3)
are weak *-equivalent. The independence number and clique numbers enjoy
similar universality results (see [MRV15] for the quantum finite-dimensional
strategy case, and [Har24] for the general case).

Applying this result to Slofstra’s undecidability result, shows that there
is no algorithm for determining the graphs satisfying x,(G) < 3.

Using the results from [JNV20], this result shows that there exists graphs
for which Hom(G, K3) has a perfect qc-strategy but no perfect qa-strategy.
This shows that the fundamental orthogonality relations for 3-colorings are
enough to separate orthogonality relations satisfiable in a general tracial C*-
algebra from those that can be satisfied in R¥. But as yet these graphs are
only implicitly defined via the results of [JNVT20] and no direct construction
of such graphs yet exists.

Applying this result to Slofstra’s example of a linear system game with a
perfect qa-strategy but no perfect g-strategy, yields the existence of a graph
G for which x4q(G) < 3 < x4(G). Earlier, [KPS18] had used Slofstra’s result
to show that there exist graphs for which x4q,(G) < x4(G) and a4(G) <
aga(G).

Because of this universality of quantum chromatic numbers, we look at
this area a bit more.

7.3. Hadamard Graphs. Not only can x,(G) < x(G), but the family of
Hadamard graphs are known to have quantum chromatic numbers that are
exponentially smaller than their chromatic numbers.
The Hadamard graphs 5 are defined as follows:
e the vertex set is all N-tuples of +£1, so that Qx has 2V vertices,
e two vertices x = (x1,...,zx) and y = (y1, ..., yn) are adjacent if and

only if
N
Ty = inyi =0.
i=1



34 S. J. HARRIS AND V. I. PAULSEN

Note that if V is odd then x -y # 0 so the only interesting case is for N
even.

It is known that x(Qn) > (1.06)" [FR87], but exact values of the chro-
matic number are only known for a few values of N. On the other hand
Xq(Qn) = N, for all even N [AHKS06].

There are also complex generalizations of the Hadamard graphs.

If we consider the graph G with uncountably many vertices,

V=TV := {X= (Ag,... An_1) s M € G|\ = 1} € €V,

and (X, i) € E < (i) = SN Xipi = 0, then results of [PT15]
show that this graph also has x,(G) = N. Very little is known about the
chromatic number of these graphs.

Since this result is not explicitly in [PT15], we present a proof here. It
also gives a different proof of the inequality x4,(Qx) < N than is in the
literature.

Theorem 7.1 ([PT15]). Let V C CV with |V| = n, where each v € V is
such that v = (v(0),...,v(N — 1)) € CN with |v(j)| = 1 for all j. Define
E={(v,w):v,weV,vlw}andlet G= (V,E). Then x4(G) < N (and
hence xq(Qn) < N ).

Proof. Let w = e’~'. For each v € V, let D, = diag( 0),...,v(N — 1))
which is unitary. For each 0 <k < N —1, let Ry = +(wl*~ ])k) Le MN
Set hy = \/»Ze 0 whey, where {e; : 0 < £ < N —1}is the canomcal

orthonormal basis for CV, so that Ry, = hihy, > 0. This also shows that Ry,

is a rank one projection. Recall that ij;ol (WHr =0forall1 </ <N -1
(it is equal to N when ¢ = 0, N). Hence,

N—1
ZR (Z( gj)k>=IN-
k=0

Thus these are a set of orthogonal rank one projections.
Let P,y = DiRyD,, so that P,y > 0 and Yp ' P, = I. Then {P,, :
1<v<n0<k<N-—1}isan (n, N)-PVM. Hence

pk, jlv,w) = try(PygPug) = trv(Dyhuhi Do Dyyhjihy Dw) = [(Dyhi| Dyyhy) 2,
is in Cy(n, N).

If (v,w) is an edge, then p(k, k|v,w) = 0 so that it is a perfect density for
Hom(G, Kny). O

7.4. Fractional Chromatic Numbers. The fractional chromatic number
of a graph G = (V, E), denoted x (G), is defined as follows. Given a natural
number k, we seek a finite set F' and subsets S, v € V' of k elements such
that

(v,w) e E = S, NS, =0.
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Then .

(@) = sy,
where the infimum is over all such pairs k and F'. This value gives a lower
bound on the chromatic number, since the chromatic number is the case
k = 1. Remarkably, xs(G) is always rational and it is computable by a
linear program.

Mancinska and Roberson [Rob13, MR16a] were the first to introduce and
study quantum analogues of the fractional chromatic number, which they
called the projective rank, and denoted {f(G). Later Severini, Stahlke,
Todorov, Winter and the second author[PSS™16] would introduce further
quantum analogues in terms of traces and give a game theoretic character-
ization of these values. We summarize some of these results here, adopting
some slightly different notations.

Given a graph G = (V, E) and a tracial C*-algebra (A, 7) we seek sets of
projections {P, : v € V'} such that:

o 7(P,) =7(Py), Vo,w eV,

e (v,w)e E = P,P, =0.
We set 5(G, A, 7) equal to the supremum of this common value of 7(P,) over
all such families in A. Then the various version of the fractional quantum
chromatic numbers are defined as follows:

e $0c(G)7t = sup{B(G, A, 7) : Ais abelian },

o £,(G) !t =sup{B(G, A,T): Ais finite dimensional },

L4 fqa(G)_l = ﬁ(Ga Rwa Tw)a

o £o(G)7 =sup{B(G, A, 7) : Ais a tracial C*-algebra }.

It is not hard to see that

&Gt = sup{B(G, M, tr,) : n € N},

and this right hand side is the quantity {;(G), introduced by Mancinska and
Roberson [MR16a]. In [PSST16] ,.(G) is denoted &, (G) and it is shown
that &o.(G) is equal to the classical fractional chromatic number x((G).
Also from the result of [KPS18] that the closure of C7 is Cj, it follows that
4(G) = £a(G).

The results of [MR16a] and [PSS*16] show that for t = loc, ¢, qa, qc,

&(G) < xi(G).

Currently, it is not known if these nonlocal quantum versions are also
necessarily rational. In [DP16] it is remarked that if ,(G) is irrational for
some graph then that would give another proof that C; is not closed.

In [PSST16], SDP’s are given for computing x4.(G) and &,.(G).

The game theoretic approach of [PSST16] also gives a way to define a
value for &,5(G), but since the result of [MR12] shows that x,s(G) < 2, this
value is probably uninteresting.

Even though there is no algorithm for deciding if x,(G) < 3 it is unknown
if the problem of determining if £,(G) < 3 is decidable.
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7.5. The Algebra of the Graph Coloring Game. The algebra A(Hom/(G, K}))
for the game of k-coloring a graph G = (V, E)) with n vertices has generators

{eva 11 < v <n,1<a<k} that satisfy the axioms to be an (n, k)-PVM,
including e, 4e,p = 0,Va # b and

(v,w) € E = ey 4€w,q =0,Va.

These algebras can be quite bizarre and unlike the quotients in [BHK23],
these algebras can be nonzero even when there are no perfect qc-strategies.

For example, it is known that k& = x(Ki) = x¢(Kkx) = Xga(Kr) =
Xqc(Kj). But if we consider the game for k-coloring the complete graph
on k + 1 vertices, i.e., Hom(Kjy1, Ki), then in [HMPS19] it is shown that
A(Hom(Kj41,Ky)) = 0 for £ < 3 while A(Hom(Kj4+1,Ky)) # 0 for all
k > 4. In fact in [HMPS19] it is shown that for & > 4 these algebras con-
tain k self-adjoint idempotents that sum to (k + 1) times the identity and
that —1 can be written as a sum of squares of self-adjoint elements. These
results show that these nonzero algebras possess no states and can have no
representations as algebras of operators on a Hilbert space.

The proof that A(Hom(Ks, K4)) # 0, which is the algebra that we dis-
cussed in the section where we introduced game algebras, necessitates show-
ing that I ¢ J(Hom(Ks,K,)) and the only known proof of this fact is
machine-assisted using programs for finding Grobner bases in noncommuta-
tive algebras [HMPS19].

7.6. Locally Commuting Algebras for Graphs. Because the algebras
of graph homomorphism games can be so intractable, there is also another
algebra that has been studied. These algebras have the same generators and
relations as for A(Hom(G1, G2)) together with the additional relations that

(v,w) € By = ey eluwp = €wbeva,Va,b € Va.

Thus, “locally” all of the elements of the generating PVM’s commute. See
for example [HMPS19] where this local algebra is studied for graph coloring
games.

7.7. Multiparty Graph Coloring. The graph coloring game has a natural
m-party analogue. Because of the fact pointed out earlier that synchronous
qgc-correlations in more than two parties are local, one has that xq.(G) =
X(G) as soon as there are 3 or more players. However, y,s(G) need not be
equal to x(G), but is known to increase to x(G) as the number of players
increases. There has been some interest in finding the least number of
players, m(G), needed to reach x(G) and in characterizing the set of graphs
G such that x,s(G) < 2, in the m-player case.

8. THE GRAPH ISOMORPHISM GAME

There are many beautiful results and ongoing research about this game.
It also has an important connection with the study of quantum groups. It
was first introduced and studied in [AMR™19].
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Given a graph G = (V, E) we define a function
rel : V xV —{-1,0,+1},
via
-1, (z,y) € E,
rel(z,y) =<0, ==y, .
+1, (z,y)¢ Eandz #y

The matrix Sg := (rel(x,y))syev is called the Siedel adjacency matriz of G
and plays an important role in graph theory.

Two graphs G; = (V;, E;),i = 1,2 are isomorphic if there is a one-to-one,
onto function f : V7 — V5 such that

rel(x,y) = rel(f(z), f(y)),Vx,y € V1.

. In this case we write G1 ~ Ga. If card(Vy) = card(V2) = n and we choose
some enumeration of these two sets, then it is easily seen that the n x n
matrix P that is one in the (7, f(7))-entry and 0 elsewhere is a permuta-
tion matrix that intertwines the two Siedel adjacency matrices. Conversely,
any permutation matrix that intertwines the two Siedel adjacency matrices
defines a function that is a graph isomorphism.

The Iso(G1,G2) is the game with input set
I = Vq, output set O = V5, and we will define it in terms of its winning set

W ={(a,b,z,y) € Vo x Vo x Vi x Vj|rel(x,y) = rel(a,b)}.

This was first introduced and studied in [AMR™19].

It is easy to see that this is a synchronous game and that when card(V;) =
card(Va), then f : Vi — V5 is a perfect deterministic strategy if and only
if f is a graph isomorphism. More generally, f is a perfect deterministic
strategy if and only if card(V;) < card(Va) and G; is isomorphic to the
induced subgraph of G on the subset f(V}).

When card(Vy) = card(Va), for t = loc, q, qs, qa, gc,ns we write G1 >~ Go
if and only if there exists a perfect density for this game in Cy.

For the rest of this section, we assume that card(V;) = card(V2) for
simplicity of exposition.

Lovasz proved that graphs G; and G2 are isomorphic if and only if the
number of graph homomorphisms from H to G is equal to the number of
graph homomorphisms from H to G for all graphs H.

A beautiful result of [MR20] shows that Gi ~;. G2 if and only if the
number of graph homomorphisms from H to (G is equal to the number of
graph homomorphisms from H to G9 for all planar graphs H.

In [BCET20] it is proven that Gy ~¢. G2 if and only if A(Iso(G1,G2)) # 0.

There is also a beautiful connection between linear system games over the
binary field and graph isomorphisms.

Given a binary system of equations AZ = b, Arkhipov (see also [AMR19))
constructed a graph G ,  with the property that G ,  ~ G Ad if and only the
system of equations has a solution. So the graph for the non-homogeneous
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is isomorphic to the graph for the homogeneous system if and only if the
non-homogeneous has a solution.
In [AMR™19] it is proven that for ¢ = loc, ¢, qc,

—

Gap~ G5 <= LCS(A,Db) has a perfect density in Cj.

-,

Later, after introducing the synchronous version of the LC'S(A,b) game it
was shown that

GA,E ~y GA’() <= syncLCS(A, 5) has a perfect density in Ct,
for t = loc, q, qs, qa, qc [KPS18].
The fundamental orthogonality relations for the graph isomorphism game
follow from the results in the paper [AMR119], where it is shown that these
relations are equivalent to the following conditions:

(1) For each x € Vi, {E;, : a € Va} is an orthogonal family of projec-
tions summing to the identity.

(2) For each a € Vo, {E, 4 : € V1} is an orthogonal family of projec-
tions summing to the identity.

(3) For each z € V} and a € V3,

Z Exl,a = Z Ex,ag .

{z1:(z,21)EE1} {a2:(a,a2)€E2}
This last relation is best visualized as follows. If we let Ag denote the
usual adjacency matrix of a graph, then the third relation is that

AG1 (Eaua) = (Ex,a)AGg )

which is equivalent to
SG’l (Em,a) = (Ex,a)SG2~

For another derivation of these relations in a language closer to these
notes, see [BCET20].

8.1. The Quantum Permutation Group. Any matrix of projections
E = (E,,) satistying conditions (1) and (2) from above is called variously
a magic unitary or a quantum permutation. This wording is motivated by
the fact that E*E = FE* = I and if the E, ,’s all belonged to an abelian
C*-algebra, E,, € C(T) then at each point in the spectrum, the matrix
(Ez.q(t)) would be a permutation.

The quantum permutation group C*(S;") is the universal C*-algebra gen-
erated by n? projections, {e;; : 1 < i,j < n}, satisfying (1) and (2) above
with V1 = Vo ={1,...,n}.

Given a graph G; on n vertices, the completion of A(Iso(G1,G1)) is an
often studied quotient of the quantum permutation group for which there
are currently many unanswered questions. It is a particularly nice quo-
tient that satisfies the axioms to be a subgroup of the quantum permutation
group (recall that quantum groups are a type of dual object to groups). See
[BKS23,dICDN20] for some of these related problems.
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In [BCE™20] modules over A(Iso(G;, G;)) are studied and it is shown that
G1 ~gc Go if and only if there is a certain Morita-type equivalence between
the modules over A(Iso(G1,G1)) with the modules over A(Iso(Ga, G2)).

8.2. Quantum Analogues of Doubly Stochastic Matrices. Recall that
an n x n matrix P = (p; ;) is doubly stochastic if p; ; > 0 and the rows and
columns sum to 1. A famous result of Birkhoff is that the doubly stochastic
matrices are the convex hull of the set of permutation matrices.

A quantum doubly stochastic operator is an n X n matrix of operators
P = (P, ;) where P;; € B(H) for some Hilbert space H satisfying P; ; > 0
and that the rows and columns sum to 3. Even for H finite dimensional the
quantum analogue of Birkhoff’s result fails: the quantum doubly stochastic
operators are not the closed convex hull of the quantum permutations. See
[dICDN20].

One might expect a dilation version of Birkhoff’s theorem, i.e., that given
a doubly stochastic operator P = (P;;), P;; € B(H), that there exists a
unital completely positive map ¢ : C*(S;) — B(H) with ¢(e; ;) = P, j. The
Stinespring dilation of this map would then dilate the doubly stochastic
operator to a quantum permutation. Even for # = C? this fails. For
example, consider:

10 0 0 0 0
P1,1:<0 0)7 P172:<0 3/4)7 P1,3:<0 1/4)5

(4 ) am (2 ) e ()

It is easily checked that these matrices define a 3 x 3 quantum doubly sto-
chastic matrix for any —1/4 < a < +1/4. As long as a # 0, one can prove
that there is no unital completely positive map ¢ : C’*(S; ) — My with
p(eiz) = Pij, Vi, j.

There are still many open problems concerning characterizing the extreme
points of the set of quantum doubly stochastic operators and giving neces-
sary and sufficient conditions for a quantum doubly stochastic matrix to
induce a unital completely positive map on the quantum symmetric group.
For more results in this direction, see [dICDN20).

8.3. Bisynchronous Games. A synchronous game G = (1,0,V) is called
bisynchronous provided that in addition to being synchronous it satisfies

V(a,a,z,y) =0, Vo #£y.

Thus, in addition to the synchronous requirement that whenever the players
are given the same question they must give the same response, is the require-
ment that whenever they give the same answer, then they must have been
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asked the same question. This family of games was introduced in [PR21],
motivated by the fact that the graph isomorphism game is bisynchronous.
A bisynchronous density is one satisfying

p(a7 b‘$,?[j) = Ovva 7& b and p(a7 CL|.’L’,y) = O,VIE 7é Y.

The set of bisynchronous densities of the various types are denoted C%*(n, k).
It is shown in [PR21] that a density in C2(n, n) is bisynchronous if and only
if there is a trace 7 on the quantum permutation group C*(S;") such that

p(av b|.’IJ, y) = T(ew,aey,b)'v

with corresponding results for C?%(n,n).

The structure of these sets of densities is not very well understood. In
particular, it is not known if C55(n,n) is the closure of C2*(n, n).

Bisynchronous densities are also related to the theory of factorizable maps
in the sense of C. Anantharaman-Delaroche [Ana06] and the theory of their
ancillas as introduced and studied by U. Haagerup, M. Musat, and M.
Rgrdam [HM11,HM15, MR20]. See also [HLP*18].

Given a bisynchronous density p(a, b|lz,y) € CP*(n,n) [PR21] proves that
if we define a linear map ® : M,, — M,, on the spanning matrix units by

P(Eyy) = Zp(a, blz,y)Eapb,
ab

then such maps are always factorizable with the type of ancilla needed de-
pending on t. In particular, the problem about the closure of Cgs (n,n) is
related to whether or not factorizable maps with ancilla R¥ are limits, in
an appropriate sense, of factorizable maps with finite dimensional ancilla.

9. OPERATIONS ON GAMES

In group theory, we have many ways of producing new groups from given
groups. There are many parallels in the theory of games. One of the keys
to the proof of the negation of Connes’ Embedding Problem in [JNVT20]
was certain ways to obtain new games from old games that had known
consequences for the values of the games.

In this section we discuss a few of these to serve as an introduction to the
literature.

The first operation is the product of games. Given two games G; =
(X:,Y;, A;, B;V;),i = 1,2 their product Gy x Go is the game with input sets
X = X1 x X5, Y =Y XY, and output sets A := Ay X Ay, B = By X By
and rule function,

Vi XxXx0x0 —A{0,1} = Zo,
given by

V((-Tla 1:2)7 (yhy?)) (ala CLQ), (blv b2)) = ‘/Yl(xlvylu ai, bl)‘/?(:c27y27 az, b2)7
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where the product is in Zs. Thus, they win if and only if Vi (1, y1,a1,b1) =1
and V5 (e, y2,as,be) = 1, that is if and only if they win both games. It is
customary to write V =V} x Vs.

It is not hard to see that for t = loc, q, qa, qs, qa, qc, ns the if p(a;, b;|z;, y;) €
Ci(1 X, [Yil, [As], | B]) then

p((a1,az2), (b1, b2)|(21, 22), (y1,92)) := p1(a1, br|x1, y1)p2(az, b2|r2, yo)

is in Cy(] X1 x Xa|, [Y1 x Ya|, | A1 X Ag|, |B1 X Bz|). Consequently, if each game
has a perfect t-strategy, then their product does also.

This also shows that if we assume that each game has a prior distribution
m1,mo on inputs and we define a distribution on inputs m := 7 X my by

m((z1,22), (Y1,y2)) = m1(x1, Y1) 72(22, y2), then
w(G1 X G, m1 X m2) > wi(G1, m1) - wi(Ga, m2).

This is summarized by saying that the value is supermultiplicative. Feige
and Kilian [FKO00] were the first to show that this inequality can be strict.

The parallel repetition of a game (G, ) is the game (G", ™) obtained by
taking the product of the game and density with itself n times and there is
a great deal of research determining how the sequence wy(G™, ™) behaves.
Since the value is supermultiplicative, there is no a priori guarantee that
when w¢(G, m) < 1 that this sequence of numbers even tends to 0.

Raz [Raz98] proved that wi,.(G", ") decays exponentially and Holen-
stein [Hol09] proved that w,s(G™,n"™) decays exponentially. Yuen [Yuel6]
proved that wy(G", 7™) decays inverse polynomially, and it is still unknown
if this decay could also be exponential.

It is currently unknown if wgy.(G", 7"™) even tends to 0.

For synchronous values of games even less is known. The crucial cases
are when wi(G,m) < wi(G,m) = 1. In [HMNT24] an example is given of a
nonsynchronous game with equal input and output sets such that

1
Wioe(G", ") = wee(G", ") = 1

2n’
so the value is monotone increasing!

In [MPTW23] the first example is given of a synchronous game for which
the synchronous value is strictly supermultiplicative. This paper also proves
that for synchronous games A(G; x Go) = A(G1) ® A(G2), which is a some-
what surprising since if say G; has n; inputs and k; outputs, then A(G; x G2)
is a quotient of the algebra of the free group F(ning, kike) = F(ny, kika) %
F (ng, /{?1 kl ) .

Two new operations on games, anchoring and fortification, were intro-
duced and studied in [BVY15,BVY16, BVY17] as a means to guarantee
exponential decay. In particular, given (G, 7) its anchor and fortification are
new games (H, p) with the properties that:

s WQ(gvﬂ-) =1 = WQ(H’/)) =1,
o wy(G,m) <1 = wy(H", p") < exp(—Q(n)).
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In [JNVT20] several other operations that obtain new games for given
games are introduced, including an operation that starts with a sequence of
games and a Turing machine to produce a new game that allows them to
fine tune the number of inputs, number of outputs, and the value.

For special families of games there are also often special operations for
combining these games to obtain a game in the same family. One such
example is XOR games.

First note that the product of two XOR games is not an XOR game. In
fact the product is not even a game with binary answers. An operation on
XOR games, studied in [CSUU06], produces an XOR game. The XOR of
XOR games G; and G with densities 71,72 and rule functions f; and fo,
denoted by Gi & Ga, is the XOR game (I; x I, {0,1}, V) with distribution
m1 % m2 and rule function defined by V ((x1,z2), (y1,y2),a,b) =1 iff a+b =
fi(z1,y1) + fa(x2,y2) in Zs. The XOR of more than two games is defined
similarly.

The bias, of a game defined as,

(G, m) = 2w (G, ) — 1.

It is proven in [CSUUO06| that the bias of the XOR of XOR games behaves
multiplicatively. However, in [HMNT24] it is shown that when the games
are synchronous the synchronous bias

6§(g77r) = 2wf(g,7r) -1,

need not be multiplicative.

10. GAMES WITH QUANTUM QUESTIONS AND ANSWERS

So far, we have considered non-local games where the players are asked
questions from finite question sets, and give answers from finite answer sets.
Several generalizations of this setting have been considered in the literature,
such as games with three or more players, or games where the question or
answer sets are allowed to be infinite [MV18]. In this section, we consider
games where either the question sets, answer sets, or both, are quantized.
One way to think of quantum questions and answers is that, instead of the
players receiving a classical question pair (z,y) € X x Y, they receive a
quantum state from the referee in the registers X and Y, and they send a
quantum state back to the referee in the registers A and B.

Operationally, one can consider such games as follows. The referee pre-
pares a quantum state, i.e., a density matrix pxy acting on C* @ C¥ and
sends this state to Alice and Bob. Alice has access to the register X and
Bob has access to the register Y. If we let Mx denote the X x X matrices,
then pxy € Mx ® My. The players will return a density matrix acting
on CA ®CY, ie., in M4 ® Mp. The fact that this is a quantum game is
reflected in the requirement that the players apply a quantum channel, i.e.,
a completely positive trace-preserving map, I' : Mx ® My — Ma ® Mp,
to obtain their output. Thus, a strategy becomes a particular quantum
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channel. The referee receives the state pap = I'(pxy) on the registers
A and B. The rules of the game are encoded in a pair of projections
{Wace, I — Moo} € Mg ®@ Mp. The referee performs the measurement on
pap given by {Tr(aecpan), Tr((I — Haec)pap)} and this pair of numbers
represent the respective probabilities that they win or lose.

The quantum channel I" that the players apply is assumed to satisfy
“no-signalling conditions”, as with classical non-local games. Formally,
this amounts to requiring that, for all px € Myx and py € My, one has
Tra(I'(px ® py)) = 0 whenever Tr(px) = 0 and Trp(I'(px ® py)) = 0 when-
ever Tr(py) = 0. Here, Try : My ® Mp — Mp and Trp : Mg ® Mp — My
represent the partial traces given on elementary tensors by Tra(C ® D) =
Tr(C)D and Trp(C ® D) = Tr(D)C, respectively.

In this setting, one can define local, quantum, quantum approximate and
quantum commuting correlations, as in the classical question and answer
setting. The key difference is the operators the players possess. Alice’s
POVMSs {E; o }zex,aca in B(H) are replaced by a single stochastic operator
matric P € Mx ® My @ B(H); that is, P > 0 and Tra(P) = Ix ® Iy.
Similarly, Bob possesses a stochastic operator matrix Q € B(H) ® My ®
Mp. The commuting operator framework assumption requires that P and
(Q commute when considered as operators on the quintuple tensor product
Mx @ My ® B(H) ® My ® Mpg. This condition is equivalent to the block
entries Py 4 g0, ¢, 2" € X, a,d’ € A, of P, commuting with each of the block
entries Qy .y pp, ¥,y €Y, bt € B, of Q. If the players share a prepared
state ¢ € H, then the map I' : Mx ® My — My ® Mp given by

F(Ex,m’ & Ey,y’) = Z <Pm,z’,a,a’Qy,y’,b,b’waw>Ea,a’ 29 Eb,b’
a,a €A
bb eB

is a quantum channel-we can regard this I' as a quantum commuting cor-
relation with quantum inputs and quantum outputs. Similarly, a quantum
correlation in this setting is one where the Hilbert space H decomposes as
a tensor product H = Ha ® Hp and Alice’s stochastic operator matrix P
acts only on CX @ C*® B(H4), while Bob’s acts on B(Hp) @ CY @ CB; then
the products Py 1/ q.0'Qy,y b are replaced with tensor products. As in the
classical case, quantum approximate correlations are those quantum chan-
nels that are pointwise limits of quantum channels arising from quantum
correlations. Lastly, local correlations are those that are convex combina-
tions of tensor products of quantum channels—that is, such I are of the form
I'= Zle Ai®; ® W;, where A\; > 0, Zle Ai = 1, and for each i, the maps
P, : Mx — My and ¥; : My — Mp are quantum channels. Equivalently,
if written using stochastic operator matrices, local correlations are those
where all the block entries of both stochastic operator matrices commute
with each other [BHTT23a].

Correlations with classical questions and answers naturally fit into this
more general framework. Indeed, suppose that p € Cy(X,Y, A, B) is given
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by p(a,blz,y) = (EyoFyptp, 1), where ¢ € H is a unit vector and {E,, :
1 <2< |X[,1<a<|Al}is Alice’s (| X1, ]A])-POVM and {F,;: 1 <y <
Y], 1 <b < |B|}is Bob’s (|Y],|B|)-POVM on H such that [E, ., F, ;] =0
for all x,¥y,a,b. Then, letting Dx be the diagonal subalgebra of Mx with
respect to the canonical basis {e, : € X}, themap ' : Dx®Dy — DsRDp
given by
(e, ®ey) = Z p(a,blx,y)eq @ ep
acA,beB

is a (classical) channel and reflects the probability that the players respond
with answers a and b, given that they received x and y, respectively.

The perspective of quantum channels is not the only perspective for cor-
relations in the quantum input and/or output setting. Work of A. Bochniak,
P. Kasprzak and P. Soltan [BKS23| considers correlations arising from uni-
tal, completely positive maps. The two are related in that unital completely
positive maps are dual to quantum channels.

Sometimes, in this setting, non-local games discussed earlier on are re-
ferred to as “classical” non-local games, or non-local games with “classi-
cal questions and answers”. Such games fall naturally into this frame-
work by requiring that the density pxy have a singular value decompo-
sition in terms of the canonical basis vectors for CX ® CY -that is, that
PXY = D jexxy Pijeie; @ ejef, where pij > 0 and ) e xyy Pij = 1.
Then the density pxy represents the players receiving the classical question
pair (4,j) € X x Y with probability p;;, in a non-local game with classical
questions. Classical answers, then, can be modelled by the referee receiving
a density in a similar manner. Formally, we think of a non-local game with
classical questions and classical answers as a quantum to quantum game,
where we replace Mx, My, M4 and Mp with the diagonal subalgebras Dx,
Dy, D4 and Dp of the corresponding matrix algebras.

There are different variants of allowing quantum questions and/or answers
for these games. We can describe these variants based on what the density
pxy is, and what the referee’s binary measurement system is. We call a
game

e Classical to classical if pxy € Dx ® Dy and ILi.((Dx ® Dy)t) =
{0}

e Quantum-to-classical if pxy € Mx ® My and I,eo((Dx ® Dy)t) =
{0}

e (Classical-to-quantum if pxy € Dx ® Dy, and

e Quantum-to-quantum otherwise.

10.1. Quantum XOR games. As XOR games are one of the fundamental
classes of non-local games with classical questions and answers, the class
of quantum XOR games are one of the fundamental classes of quantum-
to-classical games and already showcase many of the differences that occur
when allowing quantum questions or answers. These games were introduced
by O. Regev and T. Vidick [RV15]. The similarity between XOR games and
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quantum XOR games is that the answer sets for the players are {0,1}, and
the players win or lose each round of the game based only on the parity of
their bits, depending on the question state.

For quantum XOR games, it can be easier to view the question state of the
game in terms of an ensemble of states, rather than a single density matrix.
Given the input denstiy pxy, one can find unit vectors {¢;;} jyexxy and
non-negative scalars p;; > 0 such that Zl ipij =1 and

PXY = Z pij@ij@:jv
(1,J)EX XY
where the collection {¢;; : (,5) € X x Y} is perfectly distinguishable; i.e.,
©i,.; and @, j, are orthogonal whenever (i1, j1) # (i2,j2). Then the rules
for the XOR of the players’ answers depends on the sign associated with the
unit vector ¢;; € CX ® CY. If the associated sign is ¢; € {—1,1} and the
players received ¢;;, then their answers a and b must satisfy (—1)%° = ¢;.
If all of the vectors ¢;; are product states, then by applying local unitaries
on the register spaces, one obtains a classical XOR game.

For classical XOR, games, the optimal value for the game using quantum
strategies is attained in the model Cy, and the ratio of the g-value of the
game to the classical value is bounded by a constant [Tsi93]. For quantum
XOR games, the situation is very different. For example, for n > 2, the
“Th-game” in [RV15] does not have this property. For this game, players
receive one of the states 1y = %eo ®eg+ \/% Z?zl e; ®e; or P = %eo ®
ey — \/% Yo, €i @ e, each with probability % If the players respond with
bits a,b € {0,1} respectively, then they must satisfy a = b if they received
g, and a # b if they received ;.

The key property of a winning strategy for the 7T;, game is perfect embz-
zlement of entanglement, which was examined in work of R. Cleve, L. Liu
and the second author [CLP17] for Tb, although it naturally generalizes to
T,. The work of [CLP17] shows that winning the game in the commuting
operator framework with probability 1 is equivalent to the players possess-
ing unitaries U € B(C" @ H) and V € B(H ® C") with (U ® I,,)(I, ® V) =
(I, ® V)(U ® I,), and a shared state ¢ € H satisfying

(U®In)(In ®V)(€1 ®'¢®61) = \/177261 RY R e;.
=1

Such a protocol is called perfect embezzlement (of entanglement) because
the entanglement of the state on the players’ registers is greater than what
they started with, without disturbing the shared vector . Perfect embez-
zlement of entanglement, in this sense, can be done approximately in finite
dimensions [vDHO03], but cannot be done perfectly in finite dimensions or
even in a tensor product framework where H = H4 ® Hp and U acts on
C"®Hy and V on Hp @ C* [CLP17]. In terms of the T, quantum XOR
game, this means that the quantum value of the game is 1, even though
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there is no g-strategy that yields winning probability exactly 1-that is, the
ga value of the game is 1. On the other hand, the classical value of T, is
1+ ﬁ) [RV15]. If one uses the notion of winning bias, as in classical
XOR games, then the quantum bias of T}, is 1, while the classical bias of
T, is ﬁ [RV15]. Thus, the ratio of the quantum bias to the classical bias

for T, tends to infinity as n tends to infinity. In contrast, the ratio of the
quantum bias to the classical bias for XOR games is bounded above by the
real Grothendieck constant [Tsi80,RV15]. This, as noted in [RV15], follows
directly from the Grothendieck inequality [Gro53].

More is true about quantum XOR games. Whereas optimal values of
classical XOR games do not distinguish between the ¢, ga and gc models,
quantum XOR games already distinguish between the ¢ and ga models,
using the example of T;,. Due to work of the first author [Harl7] and the
negative resolution of Connes’ embedding problem [JNVT20], there exists
a quantum XOR game with a higher gc value than ga value. Another key
difference is that classical XOR games satisfy parallel repetition [CSUU06],
while there exist quantum XOR games that violate parallel repetition for
both the local and quantum values [RV15]. Thus, at first glance, non-local
games with quantum questions or answers appear to be much more general
than non-local games with classical questions and answers.

10.2. Quantum games for quantum graphs. Another recent avenue in
quantum non-local games concerns quantum graphs. As there are several
approaches to quantum graphs, one also obtains several different approaches
to quantum non-local games that are related to quantum graphs.

One approach is by considering quantum graphs as a quantum form of a
relation [Wea21]. In this setting, a quantum graph is a triple (S, M, M,,),
where S is an operator subsystem of M,, and M C M, is a finite-dimensional
C*-algebra such that S is a bimodule over the relative commutant M’. These
naturally generalize classical graphs—a classical graph G has an associated
graph operator system Sg = span{F;; : i = j or i ~g j} € My (), which is
a bimodule over the diagonal subalgebra Dy () = D{/(G).

In this setting of quantum graphs, work of M. Brannan, P. Ganesan and
the first author considered the graph homomorphism game from a quantum
graph (S, M, M,,) to a classical graph G [BGH22]. This game is another
example of a quantum-to-classical non-local game with X =Y = {1,...,n}
and A = B = V(G). With classical outputs, the players’ stochastic operator
matrices P € M, ® Dy gy ®B(H) and Q € M, ® Dy ()@ B(H) are precisely
given by a single POVM in M,, ® B(H) for each player, with |V (G)| ouptuts
[BGH22|. This game, as in the classical graph homomorphism game, satisfies
a form of synchronicity—for winning strategies, Bob’s single POVM can be
obtained uniquely from Alice’s POVM, and the state vector that the players
share induces a tracial state on the C*-algebras generated by each of the
players’ block operators. Winning strategies for the homomorphism game
from (S, M, M,,) to G are given precisely by a PVM {P,}¢_; in M®@N, for
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some finite von Neumann algebra N C B(H), such that P,((S N (M) ®
1a7) Py, = 0 whenever a,b € V(G) and a #g b [BGH22|. Since such a PVM
arises from a unital completely positive map from Dy (q) to M ® N, one can
alternatively describe the winning strategy via Choi-Kraus operators; in this
setting, one has operators F; € B(C" ® H,CY(%)) such that Y FIF =1,
and the two conditions

Fi((SN (M)} @ 1) Ff € Sa N (Dyey)*, Vi, j

and

Fz(M/ ® 1N)F]* - DV(G)) VZ?]
are satisfied. We refer the reader to [CKLT16] for more information in the
case of infinitely many Choi-Kraus operators. These conditions are akin to
the notion of a pushforward of a quantum graph by a quantum channel in
the sense of N. Weaver [Wea21]|, where the pushforward also is a pushforward
of M’ to Dy (q)-

In the case when (S, M, M,,) is a classical graph, this criterion is equiva-
lent to the existence of a winning qc strategy for the usual graph homomor-
phism game. In the ga setting, A can be replaced by RY; in the ¢ setting it
can be replaced by My for some d, and in the local setting, one can arrange
to have N' = C.

When one allows quantum graphs, this game already possesses properties
not seen in the classical setting. For example, one can define the t-chromatic
number, for t € {loc,q, qa, qc}, of the quantum graph (S, M, M,), as the
smallest ¢ € N such that the homomorphism game (S, M, M,,) — K. has a
winning t-strategy. for the quantum complete graph (M, M, M,,) (a quan-
tized version of the complete graph on n vertices, with the vertex set replaced
by the “quantum set” M), one has xq((M,, M, M,)) = dim(M), extending
the classical graph result [BGH22|]. However, if M is not abelian, then there
is no ¢ € N for which the homomorphism game (M, M, M,) — K, has a
winning local strategy, so Xioc((Mnp, M, M,)) = oo. This reflects the idea
that one should not be able to classically color a quantum graph, without
the use of entanglement, and is closely related to earlier work of D. Stahlke
[Stal6].

Alternatively, one can approach quantum graphs by considering classical
graphs as traceless, self-adjoint operator subspaces of M,,, by associating to
a classical graph G the operator space T¢ = span{E;; : i ~¢ j}. The key dif-
ference in this approach is that it ignores the bimodule structure that graph
operator systems have over the diagonal subalgebra, and instead focuses
on the operator space structure. In this setting, winning strategies for the
graph homomorphism and graph isomorphism games have similar descrip-
tions via pushforwards [BHTT23a,BHTT23b]. The key difference is that the
pushforward of commutants of the “quantum vertex sets” need not occur
[BHTT23a, BHTT23b]. This omission is not surprising, since the traceless
operator space approach to quantum graphs ignores the bimodule properties
of the operator space. That being said, in the last few years there has been
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a theory developed for homomorphism and isomorphism games for quantum
graphs via traceless self-adjoint operator spaces. Winning strategies satisfy
a condition known as concurrency, which forces the players’ strategy to arise
from a tracial state as with synchronous strategies. We refer the reader to
[TT24,BHTT23a, BHTT23b| for more information.

We note that, while both of these viewpoints provide natural approaches
to quantum graph coloring games, defining a quantum independence num-
ber for quantum graphs appears to be more challenging. Part of the issue
stems from the difficulty in effectively defining the complement of a graph
in the setting of quantum graphs. We refer the reader to [KM19] for more
information, along with the recent work [CM23] for more information.

Reconciling these different kinds of homomorphism and isomorphism, de-
pending on the definition of quantum graph used and the definition of the
non-local game used, is still an active area of research. We refer the reader
to [BHTT23b, Daw24] for more information.
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