
DOCTORAL THESIS

Peter Zeman

Groups of automorphisms of graphs

Department of Applied Mathematics

Supervisor of the doctoral thesis: prof. RNDr. Roman Nedela, DrSc.
Consultant: prof. RNDr. Jan Kratochv́ıl, CSc.

Study programme: Computer Science
Study branch: Discrete Models and Algorithms

Prague 2021

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank my supervisor, Roman Nedela, for guiding me through my
Ph.D. studies. Further, I would also like to thank my consultant, Jan Kratochv́ıl,
for a lot of scientific and career advise. In particular, thanks to him I was able to
spend a semester at the University of Oregon with Eugene Luks. Special thanks
go to my coauthors, in particular, Ilia Ponomarenko, Bojan Mohar and Ken-
ichi Kawarabayashi. Last but not least, I would like to thank the Department
of Applied Mathematics and Computer Science Institute for providing a perfect
environment.

iii

iv

Title: Groups of automorphisms of graphs

Author: Peter Zeman

Department: Department of Applied Mathematics

Supervisor: prof. RNDr. Roman Nedela, DrSc., Department of Applied Mathe-
matics – external specialist

Abstract: In this thesis we investigate automorphism groups of several restricted
classes of graphs from structural and computational point of view. For interval,
permutation, circle, and planar graphs we give inductive characterizations of their
automorphism groups in terms of group products. For chordal graphs of bounded
leafage, prove that computing the automorphism group, and consequently the
isomorphism problem, is fixed parameter tractable. For maps on surfaces, we
give a linear time algorithm computing the automorphism group, parametrized
by the genus of the underlying surface.

Keywords: automorphism groups, isomorphism problem, intersection graphs, pla-
nar graphs, maps on surfaces.

v

vi

Contents

Introduction 3

1 Preliminaries: elements of group theory 7
1.1 Group actions . 7
1.2 Group products . 8
1.3 Two simple applications . 11

2 Interval, permutation and circle graphs 15
2.1 Introduction . 15
2.2 Automorphism groups acting on intersection representations . . . 19
2.3 Automorphism groups of interval graphs 20

2.3.1 PQ- and MPQ-trees . 20
2.3.2 Automorphisms of MPQ-trees 22
2.3.3 The inductive characterization 23
2.3.4 The action on interval representations 25
2.3.5 Direct constructions . 25
2.3.6 Automorphism groups of unit interval graphs 26

2.4 Automorphism groups of circle graphs 27
2.4.1 Split decomposition . 27
2.4.2 Automorphisms of split trees 28
2.4.3 The action on prime circle representations 29
2.4.4 The inductive characterization 30
2.4.5 The action on circle representations 33

2.5 Comparability and permutation graphs 34
2.5.1 Modular decomposition . 34
2.5.2 Automorphisms of modular trees 36
2.5.3 Automorphism groups of comparability graphs 37
2.5.4 Automorphism groups of permutation graphs 39
2.5.5 Bipartite permutation graphs 41
2.5.6 Comparability graphs of dimension k 42

2.6 Algorithms . 44
2.7 Open problems . 46

3 Isomorphism of circle graphs in almost linear time 47
3.1 Introduction . 47
3.2 Minimal split decomposition and split trees 49
3.3 Canonization of graph-labeled trees 53
3.4 Canonization of prime and degenerate circle graphs 55
3.5 Canonization and graph isomorphism of circle graphs 57
3.6 Open problems . 58

4 Isomorphism problem for chordal graphs 61
4.1 Introduction . 61
4.2 Notation . 62
4.3 Stable colorings in chordal graphs 65

1

4.4 Critical set of a chordal graph . 68
4.5 A hypergraph associated with complement of the critical set . . . 71
4.6 Order-k hypergraph isomorphism: bounded color classes 75
4.7 Proof of Theorem 4.2 . 77
4.8 GI-completeness for H-graphs . 79

5 Automorphism groups of planar graphs 83
5.1 Introduction . 83
5.2 Extended graphs . 84
5.3 Reduction to 3-connected graphs 86

5.3.1 Parts . 86
5.3.2 Atoms and primitive graphs 87
5.3.3 Reduction . 90
5.3.4 Recursive construction of automorphism groups 94

5.4 Point-orbits of spherical groups 95
5.5 Automorphism groups of 3-connected planar graphs 102
5.6 Jordan-like characterization . 105

5.6.1 Vertex-stabilizers of planar graphs 105
5.6.2 Composing spherical groups with vertex-stabilizers 109

6 Automorphism groups of maps in linear time 111
6.1 Introduction . 111
6.2 Preliminaries: maps on surfaces 113
6.3 Overview of the algorithm . 116
6.4 From oriented to uniform oriented maps 117
6.5 Irreducible maps on orientable surfaces 122

6.5.1 Surfaces of negative Euler characteristic 122
6.5.2 Sphere . 122
6.5.3 Torus . 125

6.6 Non-orientable surfaces . 130
6.7 Complexity of the algorithm and summary 133

Bibliography 137

List of publications 149

2

Introduction
A symmetry of an object is a transformation of the object which leaves it visually
the same. The study of symmetries is an ancient topic in mathematics and its
precise formulation led to the birth group theory. The symmetries of a math-
ematical object, viewed as mapping from the object to itself, form a structure:
compositions of symmetries are symmetries and symmetries are invertible. A
structure with these properties is known as a group. The group of all symmetries
of an object X is known as its automorphism group Aut(X). Automorphisms of
an object preserve all mathematical properties of the object. A closely related
notion is that of an isomorphism, which is a mapping from one object to another
that preserves all mathematical properties of the objects.

In computer science, we are mainly interested in the symmetries of discrete
structures. Graphs (networks) are a fundamental and widely used model in com-
puter science and many other disciplines. A graph consists of a finite set of
vertices (nodes) and a set of edges, which are just unordered pairs of vertices rep-
resenting relations. Existence of an efficient algorithm deciding whether or not
two finite algebraic or combinatorial structures are isomorphic is a long-standing
unsolved question in the theory of computing. Since all such structures can be
canonically encoded by efficiently (polynomial-time) computable graphs [89, 127]
in a well-defined sense, graphs play a key role.

The graph isomorphism problem is the computational problem which ask to
decide whether two graphs are isomorphic. The graph automorphism problem
asks to find a generating set of the automorphism group of a given graph, and, in
fact, from the computational point of view it is equivalent to the graph isomor-
phism problem.

The graph isomorphism problem has also a practical importance. Originally,
it arose in 1950s in chemistry while building chemical information systems [138].
For molecules, described by graphs, we want to test if a given molecule is already
present in the database. Graphs are used in many fields to encode some sort
of structural information and the graph isomorphism problem is natural when
we want to match such graphs to see whether they are “the same”. Another
interesting application is malware detection, where static program analysis is done
by matching fragments of code [165]. A different type of applications of the graph
isomorphism problem could be described as symmetry breaking. Symmetries of
instances of algorithmic problems can be used to simplify the instances or to prune
search trees of backtracking algorithms. This has applications, for example, in
SAT-solving [7] or (integer) linear programming [123].

Currently, the best upper bound for the complexity of the graph isomorphism
problem comes from the quasipolynomial time algorithm due to Babai [11]. More-
over, it is believed that it is not NP-complete since otherwise the polynomial-time
hierarchy would collapse to its second level [22]. The graph isomorphism prob-
lem is polynomial-time equivalent to other important problems [125]: counting
the number of isomorphisms between two graphs, computing the order of the
automorphism group of a graph, computing the generators of the automorphism
group of a graph and to the problem of computing the orbits of the automorphism
group of a graph. Moreover, it is polynomial-time equivalent to other, seemingly

3

unrelated, problems in computational group theory [120] such as for instance to
computing the generators of a stabilizer of a set, computing the intersection of
two groups, computing the generators of the centralizer of an element in a given
group.

By fixing natural parameters, it is possible to obtain efficient parametrized al-
gorithms for various restricted classes of graphs. These include graphs of bounded
degree [119, 83], graphs of bounded eigenvalue multiplicity [13], graphs of bounded
treewidth [116, 84], graphs of bounded rank-width [84], and graphs of bounded
genus [128, 134]. Moreover, for several important restricted classes of graphs,
polynomial-time algorithms are available, for instance trees, interval graphs [42],
permutation graphs [41], planar graphs [95, 100], to list just a few of them. On
the other hand, for some graph classes the graph isomorphism problem is GI-
complete, i.e., as hard as the general graph isomorphism problem. These include
bipartite graphs, chordal graphs, comparability graphs, function graphs, regular
graphs, and others.

Graph canonization is a related problem of finding a canonical form of a given
graph. A canonical form assigns a graph C(X) to any graph X such that C(X)
is isomorphic to X, and for graphs X and Y , the canonical forms C(X) and
C(Y) are identical if and only if the graphs X and Y are isomorphic. It is worth
mentioning that in practice, a canonization algorithm is often preferable to an
isomorphism test, as it allows each graph to be treated separately, rather than
having to compare graphs pairwise. Clearly, the graph canonization problem is
computationally at least as hard as the graph isomorphism problem. Recently,
Babai proved [12] that the graph canonization problem can be solved in quasipoly-
nomial time as well. It is still an important open question, whether the graph
isomorphism problem and the graph cannonization problem are polynomial-time
equivalent.

A possible approach towards canonization is to try to find a complete set of
invariants of a given graph. In many areas of mathematics, invariants and in
particular functorial invariants play are important. For instance, if we wish to
distinguish two vector spaces from each other, with respect to the isomorphism
relation, it suffices to look at their dimensions. A more sophisticated invariant
is, for example, the Euler characteristic of a topological space. This is not strong
enough to distinguish all topological spaces, but for orientable surfaces it is suf-
ficient.

The k-dimensional Weisfeiler-Leman algorithm (k-dim WL) attempts to con-
struct a full set of invariants for graphs by iteratively coloring k-tuples of vertices
and ensuring that certain regularity conditions are satisfied. For instance, in its
simplest form, k = 1, the algorithm corresponds to the naive degree refinement:
initially, vertices are coloured according to the their degrees and then the colour-
ing is refined until each vertex has the same number of neighbours in each colour
class.

The classical WL algorithm [162], or k-dim WL with k = 2, iteratively refines
an initial coloring of ordered pairs of vertices (u, v) until the following regularity
condition is satisfied: for any pair (u, v) of fixed color a, the number of paths of
length 2 from u to v, such that the first step is of color b and the second step is
of color c, is constant. This partitions the entries of the adjacency matrix of the
graph into several color classes, each of which corresponds to a basis element of a

4

certain accosiated matrix algebra. This can be computed in polynomial time and
the isomorphism of these special matrix algebras can also be tested in polynomial
time. However, this is sufficient to solve the graph isomorphism problem only in
some special cases. More generally, for every positive integer k, the k-dim WL
algorithm colors all k-tuples of vertices and iteratively refines the color classes
based on the information from the previously obtained coloring. The k-dim WL
algorithm associates to a graph a certain algebra of k-tensors.

The k-dim WL algorithm has surprising connections to seemingly unrelated
areas. Two graphs are indistinguishable by k-dim WL if and only if they sat-
isfy the same sentences with at most k variables in a certain extension of the
first-order logic [29]. Further, two graphs X and Y are indistinguishable by k-
dim WL if and only if for every graph Z of treewidth at most k, the number
of homomorphisms from Z to X is the same as from Z to Y [58]. The most
surprising connections are related to integer and semi-definite programming. By
considering the Sherali-Adams hierarchy over a certain integer linear program,
a characterization of distinguishability by k-dim WL is obtained [6]. In a sim-
ilar way k-distinguishability can be related to the sum-of-squares hierarchy of
semi-definite relaxations of the integer linear program [135].

Grohe [80] proved a remarkable result: all graph classes excluding a fixed
graph as a minor have bounded WL-dimension, which is the minimum k such that
all graphs in the class can be distinguished by the k-dim WL. However, this does
not give any explicit bounds on the WL-dimension of the particular graph class.
For example for planar graphs, bounded genus graphs, and bounded treewidth
graphs, some lower and upper bounds can be determined more explicitly [103,
82, 101]. This also raises the question of what is the WL-dimension of classes of
graphs that are not closed under taking minors, which is not covered by Grohe’s
result. For example, for interval graphs, WL-dimension can be bounded by 2 [60].

Results and organization of this thesis. In this thesis, we study automor-
phism groups of graphs from structural and computational point of view and also
the related isomorphism problem. In Chapter 1, we introduce necessary notions
from group theory, which are used in several subsequent chapters. Notation and
concepts specific to particular chapters are introduced within the chapters. The
subsequent chapters can be split into two parts: in Chapters 2–4 we focus on
geometric intersection graphs and in Chapters 5–6 we focus on graphs and maps
on surfaces.

In Chapter 2, we give a characterization of automorphism groups of auto-
morphism groups of interval graphs, permutation graphs and circle graphs. For
comparability graphs of dimension at most four, we prove that automorphism
groups are universal. This chapter is based on the papers [107, 109]. In Chap-
ter 3, we give an almost linear time algorithm for testing isomorphism of circle
graphs. This chapter is based on the paper [98]. In Chapter 4, we prove that
computing the automorphism group, and consequently the isomorphism prob-
lem, of a chordal graph of bounded leafage is fixed parameter tractable. We also
prove that for certain related classes of graphs, the isomorphism problem is as
hard as the general graph isomorphism problem. This chapter is based on the
papers [5, 36]

In Chapter 5, give an inductive characterization of automorphism groups in

5

terms of groups products, similarly as for the previously mentioned intersection
classes of graphs. This chapter is based on the paper [108] Finally, in Chapter 6,
we give a linear-time algorithm for computing automorphism groups of maps on
surfaces, parametrized by the genus of the underlying surface. This chapter is
based on the papers [99, 100].

6

1. Preliminaries: elements of
group theory
We introduce the notation and concepts from group theory, which we use re-
peatedly in several subsequent chapters. We use the following notation for some
standard families of groups:

• Sn is the symmetric group of all permutations of the set {1, . . . , n},

• Zn is the cyclic group of integers {0, . . . , n− 1} with addition modulo n,

• Dn is the dihedral group of the symmetries of a regular n-gon, and

• An is the alternating group of all even permutations of the set {1, . . . , n}.

We note that D1 ∼= Z2, D2 ∼= Z2
2 = Z2 × Z2, Z3 ∼= A3, and D3 ∼= S3.

1.1 Group actions
A group G acts on a set Ω if there is a mapping · : G × Ω → Ω such that for
every x ∈ Ω and for every g, h ∈ G, we have 1 · x = x and (gh) · x = g · (h · x).
If there is no confusion, we write gx instead of g · x. The set Ω is called a G-set
if G acts on Ω. The action of a group G on itself by conjugation is defined by
h · g = h−1gh = gh.

For x ∈ Ω, the stabilizer of x is the group Gx = {g : gx = x}. For S ⊆ Ω,
we define the set-wise stabilizer of S is the group GS = {g : gS = S} and the
point-wise stabilizers of S is the group G(S) = {g : gx = x, x ∈ S}.

For x ∈ Ω the orbit of x is the set [x]G = {gx : g ∈ G}. We write [x] if G
is apparent from the context. The action of G on Ω is transitive if it acts on Ω
with a single orbit, fixed-point-free if Gx is trivial for every x ∈ Ω, and regular if
it is transitive and fixed-point-free.

Isomorphic actions. Two G-sets Ω1 and Ω2 are isomorphic if there is a bijec-
tion f : Ω1 → Ω2 such that f(g · x) = g · f(x) for every g ∈ G and x ∈ Ω1.1 If Ω
is a G-set, then we say that two orbits [x]G and [y]G are isomorphic orbits if the
induced G-sets [x]G and [y]G are isomorphic.
Example 1.1. We introduce two non-isomorphic Dn-sets, to which we refer re-
peatedly. Let

Ω = {0, . . . , n− 1} and Ω′ = {{i, (i+ 1) mod n} : i = 0, . . . , n− 1}

be the vertices and edges of a regular n-gon, for n ≥ 2, respectively. The action
of Dn = ⟨r, t | rn = (rt)2 = 1⟩ on the vertices of the n-gon is defined by setting
r·i = i+1 mod n, for i = 0, . . . , n−1, and t·i = n−i mod n, for i = 0, . . . , n−1.
We define the action of Dn on the edges of the n-gon to be the action on Ω′ induced
by the action of Dn on Ω. If n is even, then, by Lemma 1.4, these two actions of
Dn are non-isomorphic. For an illustration see Figure 1.1.

7

0

12

3

4

{4, 0}{3, 4}

{2, 3}

{1, 2}

{0, 1}

0

1

2

3

4

5
{5, 0}{4, 5}

{3, 4}

{2, 3} {1, 2}

{0, 1}

Figure 1.1: The actions of D5 and D6 on the vertices and edges of a regular 5-
gon and 6-gon, respectively. For D5, both actions are isomorphic. For D6, the
stabilizers of vertices have fixed points and the stabilizers of edges are fixed-point-
free, hence the actions cannot be isomorphic.

For a proof the following lemma see for example [30, Theorem 1.3].

Lemma 1.2. Let Ω be a G-set, and let G/Gx, for x ∈ Ω, be the set of all left
cosets of Gx. The sets [x]G and G/Gx are isomorphic G-sets. Moreover, two
G-sets [x]G and [y]G are isomorphic if and only if Gx and Gy are conjugate in G.

The next two lemmas are simple consequences of Lemma 1.2.

Lemma 1.3. If G acts on Ω, then all orbits of size |G| are isomorphic and all
orbits of size 1 are isomorphic.

Proof. Let x, y ∈ Ω. If [x] and [y] are of size |G|, then both Gx and Gy are trivial.
If [x] and [y] are of size 1, then both Gx and Gy equal to G. In both cases the
statement immediately follows from Lemma 1.2.

Lemma 1.4. Let G ∼= Dn = ⟨r, t | rn = t2 = (rt)2 = 1⟩ act on a set Ω. If n is
odd, then all orbits of size n are isomorphic. If n is even, then there are three
isomorphism classes of orbits of size n determined by the subgroups ⟨rn/2⟩, ⟨t⟩,
⟨rt⟩, respectively.

Proof. By the orbit-stabilizer theorem, Gx is isomorphic to Z2. If n is even, there
are exactly three conjugacy classes of subgroups of order 2. If n is odd there is just
one conjugacy class of Gx in G. Thus, the statement follows from Lemma 1.2.

1.2 Group products
Given two groups K and H, and a group homomorphism θ : H → Aut(K),
h ↦→ θh, the outer semidirect product K ⋊θ H is the cartesian product of K
and H with the operation is defined by the rule

(g1, h1) · (g2, h2) = (g1θh1(g2), h1h2).

Note that if θ is trivial, then K ⋊θ H = K ×H is the (outer) direct product. A
group G is an inner semidirect product if G = KH, where K ◁ G, H ≤ G, and
K ∩H = {1}.

1Here we follow the terminology of Peter J. Cameron [30, Page 3].

8

It is well-known [141] that inner and outer semidirect products are equivalent
in the following sense. For every inner semidirect product G = KH, there is
a homomorphism θ : H → Aut(K), defined by θh(x) = hxh−1, such that G ∼=
K ⋊θ H. On the other hand, if G = K ⋊θ H is an outer semidirect product, then
G = K ′H ′, where K ′ = {(k, 1) : k ∈ K} and H ′ = {(1, h) : h ∈ H}.

We use only special cases of semidirect products, which we now introduce.

Wreath product. Let D and Q be groups, let Ω be a finite Q-set, and let
K = ∏︁

ω∈Ω Dω, where Dω = D for all ω ∈ Ω. Then the wreath product of D by
Q, denoted by D ≀ Q, is the semidirect product of K by Q, where Q acts on K
by q · (dω) = (dqω) for q ∈ Q and (dω) ∈ ∏︁

ω∈Ω Dω.

Inhomogeneous wreath product. We generalize the standard wreath prod-
uct as follows. Let D1, . . . , Dm and Q be groups, let Ω be a finite Q-set with
orbits Ω1, . . . ,Ωm, and let K = ∏︁m

i=1
∏︁

ω∈Ωi
Di,ω, where Di,ω = Di for ω ∈ Ωi and

i = 1, . . . ,m. Then the inhomogeneous wreath product of the groups D1, . . . , Dm

by Q, denoted by (D1, . . . , Dm) ≀≀ Q, is the semidirect product of K by Q, where
Q acts on K by q · (di,ω) = (di,qω) for q ∈ Q and (di,ω) ∈ ∏︁m

i=1
∏︁

ω∈Ωi
Di,ω. Note

that by choosing D1 = · · · = Dm = D we obtain the wreath product D ≀Q.
It is natural to ask under which conditions an inner semidirect product G =

KQ, where K ◁G, is also an inhomogenous wreath product.

Theorem 1.5. Let G = KQ be a semidirect product with K ◁ G. The group
G = KQ is an inhomogeneous wreath product if and only if there is a set Ω and
a homomorphism φ : Q→ Sym(Ω) such that

(i) K = ∏︁
ω∈Ω Kω,

(ii) Kh
ω = Kφ(h)(ω), for all h ∈ H, and,

(iii) gh1 = gh2 if and only if φ(h1)(ω) = φ(h2)(ω), for all ω ∈ Ω and g ∈ Kω.

If Λi is a Di-set, for i = 1, . . . ,m, then ⋃︁
j(Λi × Ωi) can be made into a

((D1, . . . , Dm) ≀≀ Q)-set. Given d ∈ Di and ω ∈ Ωi, for i = 1, . . . ,m, we define
the permutation d∗

i,ω of ⋃︁
j(Λj×Ωj) as follows: for each (λ, ω′) ∈ ⋃︁

j(Λj×Ωj), set

d∗
i,ω(λ, ω′) =

⎧⎨⎩(dλ, ω′) if ω′ = ω,

(λ, ω′) if ω′ ̸= ω.

It is easy to see that d∗
i,ωd

′∗
i,ω = (dd′)∗

i,ω. Thus,

D∗
i,ω = {d∗

i,ω : d ∈ Di}

is a subgroup of Sym(⋃︁
j Λj ×Ωj). This is certified by the map Di → D∗

i,ω, given
by d ↦→ d∗

i,ω, which is an isomorphism. For each q ∈ Q, we define a permutation
q∗ of ⋃︁

j(Λj × Ωj) by
q∗(λ, ω′) = (λ, qω′),

and define
Q∗ = {q∗ : q ∈ Q}.

9

It is easy to see that Q∗ is a subgroup of Sym(⋃︁
j Λj × Ωj). This is certified by

the map Q→ Q∗, given by q ↦→ q∗, which is an isomorphism.
We note that an analogous concept for permutation groups was defined in [8,

140] under the names “G-Kranz product” and “generalized composition”, respec-
tively. In particular, if all the groups involved in the inhomogeneous wreath
product are permutation groups, then these concepts coincide. The following
theorem is a generalization of [141, Theorem 7.24].

Theorem 1.6. Let D1, . . . , Dm and Q be groups, let Ω be a Q-set with orbits
Ω1, . . . ,Ωm, and let Λi be a Di-set for i = 1, . . . ,m. The inhomogeneous wreath
product (D1, . . . , Dm) ≀≀ Q is isomorphic to the group

W = ⟨
m⋃︂

i=1

⋃︂
ω∈Ωi

D∗
i,ω, Q

∗⟩ ≤ Sym(
m⋃︂

i=1
Λi × Ωi).

In particular, W = K∗Q∗, where K∗ = ⟨⋃︁m
i=1

⋃︁
ω∈Ωi

D∗
i,ω⟩ is the direct product∏︁m

i=1
∏︁

ω∈Ωi
D∗

i,ω.

Proof. We show that the group K∗ is the direct product. If ω ̸= ω′, then
d′∗

j,ω′d∗
i,ωd

′∗−1
j,ω′ = d∗

i,ω for all d∗
i,ω and d′∗

j,ω′ ∈ K∗. Thus, D∗
i,ω◁K

∗ for all i = 1, . . . ,m
and ω ∈ Ω. Further, each d∗

i,ω ∈ D∗
i,ω fixes all (λ, ω′) ∈ ⋃︁

j(Λj × Ωj) with ω′ ̸= ω,
while each element of ⟨⋃︁m

j=1
⋃︁

ω′∈Ωi,ω′ ̸=ω D
∗
j,ω′⟩ fixes all (λ, ω) for all λ ∈ Λi. It

follows that if d∗
i,ω ∈ D∗

i,ω ∩ ⟨
⋃︁m

j=1
⋃︁

ω′∈Ωi,ω′ ̸=ω D
∗
j,ω′⟩, then d∗

i,ω = 1.
If d∗

i,ω ∈ D∗
i,ω and q∗ ∈ Q∗, then q∗d∗

i,ωq
∗−1 = d∗

i,qω. Hence, q∗K∗q∗−1 ≤ K∗

for each q∗ ∈ Q∗. Since W = ⟨K∗, Q∗⟩, it follows that K∗ ◁W . We get that
W = K∗Q∗ and to see that W is a semidirect product of K∗ by Q∗, it suffices
to show that K∗ ∩ Q∗ = 1. If d∗

i,ω ∈ K∗, then either d∗
i,ω(λ, ω′) = (dλ, ω′) or

d∗
i,ω(λ, ω′) = (λ, ω′), i.e., each d∗

i,ω always fixes the second coordinate. If q∗ ∈ Q∗,
then q∗(λ, ω′) = (λ, qω′), i.e., each q∗ always fixes the first coordinate. Therefore
every element of K∗ ∩Q∗ fixes every (λ, ω′) and hence must be equal to 1.

Finally, the map (D1, . . . , Dm) ≀≀ Q→ W , defined by (di,ω)q ↦→ (d∗
i,ω)q∗, is an

isomorphism.

Lemma 1.7. Let G = KQ be a semidirect product of K by Q. Further, let
K = K1×K2 and Q = Q1×Q2 such that Q1 fixes K2 pointwise and Q2 fixes K1
pointwise. Then,

G ∼= (K1 ⋊Q1)× (K2 ⋊Q2).

Proof. First, we prove that K1Q1 ◁ KQ. For k1q1 ∈ K1Q1 and kq ∈ KQ, we
have

kqk1q1(kq)−1 = kqk1q
−1qq1q

−1k−1.

There are k′
1 ∈ K1 and q′

1 ∈ Q1 such that the right-hand side is equal to

kk′
1q

′
1k

−1 = kk′
1q

′
1k

−1q′−1
1 q′

1.

Now, if k ∈ K1, then q′
1k

−1q′−1
1 ∈ K1. On the other hand if k ∈ K2, then

q′
1k

−1q′−1
1 = k−1 and the right-hand side is equal to k′

1q
′
1. Similarly, one can prove

that K2Q2 ◁KQ. It is easy to see that K1Q1 ∩K2Q2 = {1}. Finally, Ki ◁ Qi

and so KiQi is a semidirect product, for i = 1, 2.

10

Lemma 1.8. Let D1, . . . , Dm and Q be groups, let Ω be a Q-set with orbits
Ω1, . . . ,Ωm. Moreover, assume that all Ω1, . . . ,Ωk are of size one for some k ≤ m.
Then,

(D1, . . . , Dm) ≀≀ Q ∼= D1 × · · · ×Dk × (Dk+1, . . . , Dm) ≀≀ Q.

Proof. There are groups Di,ω
∼= Di, for i = 1, . . . ,m, such that (D1, . . . , Dm) ≀≀ Q

is the semidirect product of K by Q, where K = ∏︁m
i=1

∏︁
ω∈Ωi

Di,ω and Q acts on
K by q · (di,ω) = (di,qω). By the assumptions, we can write

K = D1,ω1 × · · · ×Dk,ωk
×

m∏︂
i=k+1

∏︂
ω∈Ωi

Di,ω,

where Ωi = {ωi}, for i ≤ k. By the definition of inhomogeneous wreath product,
all subgroups Di,ωi

are centralized by Q, which completes the proof.

Lemma 1.9. Let D1, . . . , Dm and Q be groups, let Ω be a Q-set with orbits
Ω1, . . . ,Ωm, where Ω1 and Ω2 are isomorphic. Then,

(D1, . . . , Dm) ≀≀ Q ∼= (D1 ×D2, D3, . . . , Dm) ≀≀ Q.

Proof. There are groups Di,ω
∼= Di, for i = 1, . . . ,m, such that (D1, . . . , Dm) ≀≀ Q

is the semidirect product of K by Q, where K = ∏︁m
i=1

∏︁
ω∈Ωi

Di,ω and Q acts on
K by q · (di,ω) = (di,qω). Further, let f : Ω1 → Ω2 be a bijection certifying that Ω1
and Ω2 are isomorphic orbits, i.e., f(qω) = qf(ω) for every q ∈ Q and ω ∈ Ω1.
We can write

K =
∏︂

ω∈Ω1

(D1,ω ×D2,f(ω))×
m∏︂

i=3

∏︂
ω∈Ωi

Di,ω.

Let d1,ωd
′
2,ω ∈ D1,ω × D2,f(ω) for some ω ∈ Ω1. From the definition of inho-

mogeneous wreath product and isomorphicm of the orbits Ω1 and Ω2 it follows
that

qd1,ωd
′
2,ωq

−1 = qd1,ωq
−1qd′

2,ωq
−1 = d1,qωd

′
2,qf(ω) = d1,ωd

′
2,f(qω) ∈ D1,qω ×D2,f(qω).

Thus, the inhomogeneous wreath product (D1, . . . , Dm) ≀≀ Q is determined by
the induced action of Q on Ω \ Ω2 and therefore it is isomorphic to (D1 ×
D2, D3, . . . , Dm) ≀≀ Q.

1.3 Two simple applications
We show how can the inhomogenous wreath product be used to describe the
automorphism groups of several well-known classes of graphs.

Automorphism groups of disconnected graphs. There is a well-known
description of the automorphism group of a disconnected graph in terms of the
automorphism groups of its connected components.

Theorem 1.10. Let X1, . . . , Xn be pairwise non-isomorphic simple connected
graphs and let X be the disjoint union X = ⋃︁n

i=1
⋃︁mi

j=1 Xi,j, where Xi,j
∼= Xi.

Then
Aut(X) ∼= Aut(X1) ≀ Sm1 × · · · × Aut(Xn) ≀ Smn .

11

Proof. First, we describe the automorphisms of X. We denote V (Xi,j) = {(v, j) :
v ∈ V (Xi), j ∈ {1 . . . ,mi}}.

For every d ∈ Aut(Xi), there is an automorphism d∗
i,j ∈ Aut(X) such that

d∗
i,j(v, j′) = (dv, j′) if j′ = j, and d∗

i,j(v, j′) = (v, j′) if j′ ̸= j. Note that the
subgroup D∗

i,j = {d∗
i,j : d ∈ Aut(Xi)} ≤ Aut(X) fixes all the vertices in V (X) \

V (Xi,j) pointwise.
Further, for every q ∈ Sm1×· · ·×Smn , there is an automorphism q∗ ∈ Aut(X)

of X such that q∗(v, j) = (v, qj). Clearly the subgroup Q∗ = {q∗ : q ∈ Sm1 ×
· · ·×Smn} ≤ Aut(X) acts on the set ⋃︁

i{(i, j) : j = 1, . . . ,mi} of the labels of the
connected components of X.

We have Aut(X) = ⟨⋃︁i

⋃︁
j D

∗
i,j, Q

∗⟩ and by Theorem 1.6

Aut(X) ∼= (Aut(X1), . . . ,Aut(Xn)) ≀≀ (Sm1 × · · · × Smn).

Finally, applying Lemma 1.7 repeatedly on the right-hand side gives the theorem.

Figure 1.2 illustrates the structure of the automorphism group of a simple
disconnected graph.

Automorphism groups of trees. By a simple application of the previous
theorem, we prove the following theorem characterizing the automorphism groups
of trees.

Theorem 1.11. [10, Proposition 1.15] The class Aut(TREE) is equal to the class
of groups G defined inductively as follows:

(a) {1} ∈ G.

(b) If G1, G2 ∈ G, then G1 ×G2 ∈ G.

(c) If G ∈ G, then G ≀ Sn ∈ G for all n ∈ N.

1

2

3

4

X Aut(X)

1
2

3
4

2
1

3
4

1
2

4
3

2
1

4
3

3
4

1
2

4
3

1
2

3
4

2
1

4
3

2
1

Figure 1.2: On the left, a disconnected graph X consisting of two independent
edges. On the right, the Cayley graph of Aut(X), generated by three involutions
acting on X on the left: (1 2)(3)(4), (1)(2)(3 4), and (1 3)(2 4). We have
Aut(X) ∼= Z2

2 ⋊ Z2 = Z2 ≀ Z2.

12

Proof. First, we show that Aut(TREE) ⊆ G. We proceed by induction on the
number of vertices. Every tree has a center, which is either a vertex or an edge.
For a tree T , the group Aut(T) stabilizes its center setwise. Moreover, if the center
of T is an edge, we form T ′ by subdividing this edge by exactly one vertex. Then
Aut(T ′) ∼= Aut(T) and the center of T ′ is a vertex. Thus, we may assume that
the center is a vertex v. After deleting v together with the edges incident to it,
we get a disconnected graph consisting of ki copies of the tree Ti, for i = 1, . . . , n.
By Theorem 1.10, we have

Aut(T) ∼= Aut(T1) ≀ Sm1 × · · · × Aut(Tn) ≀ Smn ,

and so, by the induction hypothesis, Aut(T) is isomorphic to a group in G.
To prove Aut(TREE) ⊇ G, we proceed by the induction on the number of

operations. For each of the two operations, we easily construct a tree realizing
the corresponding operation.

13

14

2. Interval, permutation and
circle graphs

2.1 Introduction
In this chapter, we derive which abstract groups can be automorphism groups of
interval, permutation, and circle graphs. Each of these graph classes are inter-
section graphs of certain geometric objects and admits a tree-like description of
the structure of all representations of a given graph. For interval graphs we have
PQ-trees, for permutation graphs modular trees, and for circle graphs split trees.
Consequently, the automorphism groups can be determined for theses classes
similarly as for trees; see Theorem 1.11. The same technique is applied in Chap-
ter 5 to planar graphs, however, for planar graphs the technical difficulties are
considerably more involved.

An intersection representation R of a graph X is a collection {Rv : v ∈ V (X)}
such that uv ∈ E(X) if and only if Ru∩Rv ̸= ∅; the intersections encode the edges.
To get nice graph classes, one typically restricts the sets Rv to particular classes
of geometrical objects; for an overview, see the classical books [78, 148]. We show
that a well-understood structure of all intersection representations allows one to
determine the automorphism group.

For interval graphs, circle graphs, and permutations graphs, we show that
the automorphism groups can be described inductively as inhomogeneous wreath
products of symmetric, dihedral, and cyclic groups. On the negative side, we
show that the automorphism groups of comparability graphs of dimension 4, a
superclass of permutation graphs, are already universal. We recall that a class
C of graphs is universal if for every group G there is a graph X ∈ C such that
G ∼= Aut(X).

Interval graphs. In an interval representation of a graph, each set Rv is a
closed interval of the real line. A graph is an interval graph if it has an interval
representation; see Figure 2.1a. A graph is a unit interval graph if it has an
interval representation with each interval of the length one. We denote these
classes by INT and UNIT INT, respectively. Caterpillars (CATERPILLAR) are
trees with all leaves attached to a central path; we have CATERPILLAR = INT ∩
TREE.

Theorem 2.1. The following equalities hold:

1

23

4 5

6

7

8

9

10

(a) (b)

12

1
2

3
4

34

5
6

5
6

7 8

7
8

9
10

9 10
3 12

1
2

10
9

5

64 11

7 8
3 4 7 8 11 12

6
5

2
1

10
9

Figure 2.1: (a) An interval graph and one of its interval representations. (b) A
circle graph and one of its circle representations.

15

(i) Aut(INT) = Aut(TREE),

(ii) Aut(connected UNIT INT) = Aut(CATERPILLAR),

Concerning (i), this equality is not well-known. It was stated by Hanlon [88]
without a proof in the conclusion of his paper from 1982 on enumeration of
interval graphs.

Our structural analysis is based on PQ-trees [20] which describe all interval
representations of an interval graph. It explains this equality and further solves
an open problem of Hanlon: for a given interval graph, to construct a tree with
the same automorphism group. Without considering PQ-trees, this equality is
surprising, since these classes are very different. Caterpillars which form their
intersection have very restricted automorphism groups (see Lemma 2.11) as well.
The result (ii) follows from the known properties of unit interval graphs and our
understanding of Aut(INT).

Booth and Lueker [20] originally invented PQ-trees to solve the more general
consecutive ordering problem in linear time. As a consequence, they obtained the
first linear-time recognition algorithm for interval graphs.

Circle graphs. In a circle representation, each Rv is a chord of a circle. A
graph is a circle graph (CIRCLE) if it has a circle representation; see Figure 2.1b.

Theorem 2.2. Let Σ be the class of groups defined inductively as follows:

(a) {1} ∈ Σ.

(b) If G1, G2 ∈ Σ, then G1 ×G2 ∈ Σ.

(c) If G ∈ Σ, then G ≀ Sn ∈ Σ.

(d) If G1, G2, G3 ∈ Σ, then (G4
1, G

2
2, G

2
3) ≀≀ Z2

2 ∈ Σ, where the action of Z2
2 on

the coordinates of G4
1 is regular, and the actions on the coordinates of G2

2
and G2

3 are isomorphic to the actions of Z2
2 on the vertices and edges of a

2-gon, respectively.

Then Aut(connected CIRCLE) consists of the following groups:

(e) If G ∈ Σ, then G ≀ Zn ∈ Aut(connected CIRCLE), for n ≥ 1.

(f) If G1, G2 ∈ Σ, then (G2n
1 , G

n
2) ≀≀ Dn ∈ Aut(connected CIRCLE), for n ≥ 3

odd, where the action of Dn is regular on the coordinates of G2n
1 and on the

coordinates of Gn
2 it is isomorphic to the action of Dn on the vertices of an

n-gon.

(g) If G1, G2, G3 ∈ Σ, then (G2n
1 , G

n
2 , G

n
3) ≀≀ Dn ∈ Aut(connected CIRCLE), for

n ≥ 2 even, where the action of Dn is regular on the coordinates of G2n
1 , and

the actions on the coordinates of Gn
2 and Gn

3 are isomorphic to the actions
of Dn on the vertices and edges of an n-gon, respectively.

The automorphism group of a disconnected circle graph can be easily deter-
mined using Theorem 1.10. We use split trees describing all representations of
circle graphs. The class Σ consists of the stabilizers of vertices in connected circle
graphs and Aut(TREE) ⊊ Σ.

16

Comparability graphs. A comparability graph is derived from a poset by re-
moving the orientation of the edges. Alternatively, every comparability graph X
can be transitively oriented: if x → y and y → z, then xz ∈ E(X) and x → z;
see Figure 2.2a. This class was first studied by Gallai [72] and we denote it by
COMP.

An important structural parameter of a poset P is its Dushnik-Miller di-
mension [57]. It is the least number of linear orderings L1, . . . , Lk such that
P = L1 ∩ · · · ∩ Lk. (For a finite poset P , its dimension is always finite since P
is the intersection of all its linear extensions.) Similarly, we define the dimension
of a comparability graph X, denoted by dim(X), as the dimension of any transi-
tive orientation of X. (Every transitive orientation has the same dimension; see
Section 2.5.3.) By k-DIM, we denote the subclass consisting of all comparability
graphs X with dim(X) ≤ k. We get the following infinite hierarchy of graph
classes:

1-DIM ⊊ 2-DIM ⊊ 3-DIM ⊊ 4-DIM ⊊ · · · ⊊ COMP.

For instance, [143] proves that the bipartite graph of the incidence between the
vertices and the edges of a planar graph always belongs to 3-DIM.

Surprisingly, comparability graphs are related to intersection graphs, namely
to function and permutation graphs. Function graphs (FUN) are intersection
graphs of continuous real-valued function on the interval [0, 1]. Permutation
graphs (PERM) are function graphs which can be represented by linear functions
called segments [14]; see Figure 2.2b and c. We have FUN = co-COMP [79] and
PERM = COMP ∩ co-COMP = 2-DIM [63], where co-COMP are the complements
of comparability graphs.

Since 1-DIM consists of all complete graphs, Aut(1-DIM) = {Sn : n ∈ N}. The
automorphism groups of 2-DIM = PERM are the following:

Theorem 2.3. The class Aut(PERM) is described inductively as follows:

(a) {1} ∈ Aut(PERM),

(b) If G1, G2 ∈ Aut(PERM), then G1 ×G2 ∈ Aut(PERM).

(c) If G ∈ Aut(PERM), then G ≀ Sn ∈ Aut(PERM).

(d) If G1, G2, G3 ∈ Aut(PERM), then (G4
1, G

2
2, G

2
3) ≀≀ Z2

2 ∈ Aut(PERM),where
the action of Z2

2 on the coordinates of G4
1 is regular, and the actions on the

coordinates of G2
2 and G2

3 are isomorphic to the actions of Z2
2 on the vertices

and edges of a 2-gon, respectively.

In comparison to Theorem 1.11, there is the additional operation (d) which
shows that Aut(TREE) ⊊ Aut(PERM). Geometrically, the group Z2

2 in (d) cor-
responds to the horizontal and vertical reflections of a symmetric permutation
representation. Our result also easily gives the automorphism groups of bipartite
permutation graphs (BIP PERM), in particular we have Aut(CATERPILLAR) ⊊
Aut(BIP PERM) ⊊ Aut(PERM).

Corollary 2.4. The class Aut(connected BIP PERM) consists of all abstract
groups G1, G1 ≀ Z2 × G2 × G3, and (G4

1, G
2
2) ≀≀ Z2

2, where G1 is a direct prod-
uct of symmetric groups, and G2 and G3 are symmetric groups.

17

1 2 3

4 5 6

(a)

1 2
4

3
56

1
2
3
4
5
6

4
2
6
1
5
3(b)

1

5

4

3

2

6

1
2
3
4
5
6

3
5
1
6
2
4(c)

Figure 2.2: (a) A comparability graph with a transitive orientation. (b) A func-
tion graph and one of its representations. (c) A permutation graph and one of
its representations.

Comparability graphs are universal since they contain bipartite graphs; we can
orient all the edges from one part to the other. Since the automorphism group
is preserved by complementation, FUN = co-COMP implies that also function
graphs are universal. In Section 2.5, we explain the universality of FUN and
COMP in more detail. Similarly posets are known to be universal [18, 155].

Bipartite graphs have arbitrarily large dimensions: the crown graph, which is
Kn,n without a matching, has dimension n. We give a construction which encodes
any graph X into a comparability graph Y with dim(Y) ≤ 4, while preserving
the automorphism group.
Theorem 2.5. For every k ≥ 4, the class k-DIM is universal and its graph
isomorphism is GI-complete. The same holds for posets of the dimension k.

Yannakakis [164] proved that recognizing 3-DIM is NP-complete by a reduction
from 3-coloring. For a graph X, a comparability graph Y is constructed with
several vertices representing each element of V (X) ∪ E(X). It is proved that
dim(Y) = 3 if and only if X is 3-colorable. Unfortunately, the automorphisms
of X are lost in Y since it depends on the labels of V (X) and E(X) and Y
contains some additional edges according to these labels. We describe a simple
and completely different construction which achieves only the dimension 4, but
preserves the automorphism group: for a given graph X, we create Y by replacing
each edge with a path of length eight. However, it is non-trivial to show that
Y ∈ 4-DIM, and the constructed four linear orderings are inspired by [164]. A
different construction follows from [32, 159]. In particular, in [32] it is proven
that all bipartite grid intersection graphs have dimension at most 4 and in [159]
it is proven that they are GI-complete.

Related graph classes. Theorems 2.1, 2.2 and 2.3 and Corollary 2.4 state that
INT, UNIT INT, CIRCLE, PERM, and BIP PERM are non-universal. Figure 2.3
shows that their superclasses are already universal.

Trapezoid graphs (TRAPEZOID) are intersection graphs of trapezoids between
two parallel lines and they have universal automorphism groups [153]. Claw-free
graphs (CLAW-FREE) are graphs with no induced K1,3. Roberts [139] proved that
UNIT INT = CLAW-FREE ∩ INT. The complements of bipartite graphs (co-BIP)
are claw-free and universal. Chordal graphs (CHOR) are intersection graphs of
subtrees of trees, they generalize interval graphs and are universal [117]. Interval
filament graphs (IFA) are intersection graphs of graphs of continuous functions
fu : [a, b]→ R such that fu(a) = fu(b) = 0 and fu(x) > 0 for x ∈ (a, b) [73].

Outline of the chapter. In Section 2.2, we explain our general technique for
determining the automorphism group from the geometric structure of all repre-

18

CATERPILLAR

TREE INT

CHORCIRCLE
FUN

IFA

UNIT INT

PERM

BIP PERM CLAW-FREE

co-BIP

PLANAR

co-4-DIM

TRAPEZOID

universal

non-universal

Figure 2.3: The inclusions between the considered graph classes. In this chapter,
we characterize the automorphism groups of the classes in gray.

sentations, and relate it to map theory. We describe the automorphism groups of
interval and unit interval graphs in Section 2.3, of circle graphs in Section 2.4, and
of permutation and bipartite permutation graphs in Section 2.5. Our results are
constructive and lead to polynomial-time algorithms computing automorphism
groups of these graph classes; see Section 2.6. We conclude with several open
problems.

2.2 Automorphism groups acting on intersec-
tion representations

In this section, we describe a general technique which allows us to geometri-
cally understand automorphism groups of some intersection-defined graph classes.
Suppose that one wants to understand an abstract group G. Sometimes, it is
possible to interpret G using a natural action on some set which is easier to un-
derstand. The action is called faithful if no non-trivia non-trivial element of G
belongs to all stabilizers. The structure of G is captured by a faithful action. We
require that this action is “faithful enough”, which means that the stabilizers are
easily understood.

Our approach is inspired by theorey of maps. A map M is an embedding
of a graph X into a surface such that every face is homeomorphic to a disk.
If the underlying graph is simple, an automorphism of a map is a permutation
of the vertices which preserves the vertex-edge-face incidences. If we restrict to
orientable surfaces, then by choosing a global orientation of the underlying surface
we get a cyclic permutation of the half-edges emanating from every vertex. One
can consider the action of Aut(X) on the set of all maps of X: for π ∈ Aut(X),
we get another map π(M) in which the half-edges in the rotational schemes are
permuted by π; see Figure 2.4. The stabilizer of a mapM in this action, exactly
corresponding to Aut(M), is the subgroup of Aut(X) which preserves or reflects
the rotational schemes. Unlike Aut(X), we know that Aut(M) is always small
and can be efficiently determined. The action of Aut(X) describes morphisms
between different maps and in general can be very complicated. For more about
maps, see also Chapter 6.

The induced action. For a graph X, we denote by Rep the set of all its (in-
terval, circle, etc.) intersection representations. An automorphism π ∈ Aut(X)

19

creates from R ∈ Rep another representation R′ such that R′
π(u) = Ru; so π

swaps the labels of the sets of R. We denote R′ as π(R), and Aut(X) acts on
Rep.

The general set Rep is too large. Therefore, we define a suitable equivalence
relation ∼ and we work with Rep/∼. It is reasonable to assume that ∼ is a
congruence with respect to the action of Aut(X): for every R ∼ R′ and π ∈
Aut(X), we have π(R) ∼ π(R′). We consider the induced action of Aut(X) on
Rep/∼.

The stabilizer of R ∈ Rep/∼, denoted by Aut(R), describes automorphisms
inside this representation. For a nice class of intersection graphs, such as interval,
circle or permutation graphs, the stabilizers Aut(R) are very simple. If it is a
normal subgroup, then the quotient Aut(X)/Aut(R) describes all morphisms
which change one representation in the orbit of R into another one. Our strategy
is to understand these morphisms geometrically, for which we use the structure of
all representations, encoded for the considered classes by PQ-, split and modular
trees.

2.3 Automorphism groups of interval graphs
In this section, we prove Theorem 2.1. We introduce MPQ-tree, which is a
structure that combinatorially captures all possible interval representations of an
interval graph. We define the automorphism group of an MPQ-tree and derive
a characterization of Aut(INT), which we prove to be equivalent to the Jordan’s
characterization of Aut(TREE). Finally, we answer Hanlon’s question [88] by
constructing for a given interval graph a tree with the same automorphism group,
and we also show the converse construction.

2.3.1 PQ- and MPQ-trees
We denote the set of all maximal cliques of X by C(X). In 1965, Fulkerson and
Gross proved the following fundamental characterization of interval graphs.

Lemma 2.6 (Fulkerson and Gross [69]). A graph X is an interval graph if and
only if there exists a linear ordering ⪯ of C(X) such that for every x ∈ V (X) the
maximal cliques containing x appear consecutively in this ordering.

An ordering ⪯ of C(X) from Lemma 2.6 is called a consecutive ordering.
Lemma 2.6 implies that an interval representation of x induces a consecutive
ordering of C(X). Two interval representation of X are different if they induce
different consecutive orderings.

1

2 4

3 1

2 3

4
Aut(M1) Aut(M2)

π = (3 4)

Figure 2.4: There are two different maps, depicted with the action of Aut(X). The
stabilizers Aut(Mi) ∼= Z2

2 are normal subgroups. The remaining automorphisms
morph one map into the other, for instance π transposing 2 and 3. We have
Aut(X) ∼= Z2

2 ⋊ Z2.

20

PQ-trees. For an interval graphs X, a rooted tree T is a PQ-tree of X if it
satisfies the following:

• There are two types of inner nodes, namely P-nodes and Q-nodes.

• For every inner node, its children are ordered from left to right and a P-node
has at least two children and a Q-node at least three children.

• The leaves correspond one-to-one to C(X).

Figure 2.5 shows an example.
The frontier of T is the induced ordering ⪯ of the leaves. Two PQ-trees are

equivalent if one can be obtained from the other by a sequence of two elemen-
tary transformations: (i) an arbitrary permutation of the order of subtrees of a
P-node, and (ii) the reversal of the subtrees of a Q-node. Booth and Lueker [20]
proved the existence and uniqueness of PQ-trees up to equivalence transforma-
tions. Moreover, all possible consecutive orderings of C(X) are in one-to-one
correspondence with the frontiers of all equivalent PQ-trees [20].

For a PQ-tree T , we consider all sequences of equivalent transformations.
Two such sequences are congruent if they transform T the same. Each sequence
consists of several transformations of inner nodes, and it is easy to see that these
transformations are independent. If a sequence transforms one inner node several
times, it can be replaced by a single transformation of this node. Let Σ(T) be the
quotient of all sequences of equivalent transformations of T by this congruence.
We can represent each class by a sequence which transforms each node at most
once.

Observe that Σ(T) forms a group with the concatenation as the group op-
eration. This group is isomorphic to a direct product of symmetric groups.
The order of Σ(T) is equal to the number of equivalent PQ-trees of T . Let
T ′ = σ(T) for some σ ∈ Σ(T). Then Σ(T ′) ∼= Σ(T) since σ′ ∈ Σ(T ′) corresponds
to σσ′σ−1 ∈ Σ(T).

MPQ-trees. A modified PQ-tree is created from a PQ-tree by adding infor-
mation about the vertices. They were described by Korte and Möhring [112] to
simplify linear-time recognition of interval graphs. It is not widely known but
the equivalent idea was used earlier by Colbourn and Booth [39].

Let T be a PQ-tree representing an interval graph X. We construct the
MPQ-tree M by assigning subsets of V (X), called sections, to the nodes of T ; see
Figure 2.5. The leaves and the P-nodes have each assigned exactly one section
while the Q-nodes have one section per child. We assign these sections as follows:

C1

3

C2

4

C3

7

C4

8

C5

11

C6

12

6
5

2
1

10
9

C1 C2 C5 C6

C3 C4

1, 2 1, 2, 5, 6 5, 6 5, 6, 9, 10 9, 10

∅
{3} {4} {11} {12}

{7} {8}

Figure 2.5: An ordering of the maximal cliques, and the corresponding PQ-tree
and MPQ-tree. The P-nodes are denoted by circles, the Q-nodes by rectangles.
There are four different consecutive orderings.

21

• For a leaf L, the section sec(L) contains those vertices that are only in the
maximal clique represented by L, and no other maximal clique.

• For a P-node P , the section sec(P) contains those vertices that are in all
maximal cliques of the subtree of P , and no other maximal clique.

• For a Q-node Q and its children T1, . . . , Tn, the section seci(Q) contains
those vertices that are in the maximal cliques represented by the leaves of
the subtree of Ti and also some other Tj, but not in any other maximal
clique outside the subtree of Q. We put sec(Q) = sec1(Q) ∪ · · · ∪ secn(Q).

Korte and Möhring [112] proved existence of MPQ-trees and many other proper-
ties, for instance each vertex appears in sections of exactly one node and in the
case of a Q-node in consecutive sections. Two vertices are in the same set of sec-
tions if and only if they belong to precisely the same maximal cliques. Figure 2.5
shows an example.

We consider the equivalence relation ∼T W on V (X) is defined as follows:
x ∼T W y if and only if N [x] = N [y]. If x ∼T W y, then we say that they are twin
vertices. The equivalence classes of ∼T W are called twin classes. Twin vertices
can usually be ignored, but they influence the automorphism group. Two vertices
belong to the same set sections if and only if they are twin vertices.

2.3.2 Automorphisms of MPQ-trees
For a graph X, the automorphism group Aut(X) induces an action on C(X) since
every automorphism permutes the maximal cliques. If X is an interval graph,
then a consecutive ordering ⪯ of C(X) is permuted into another consecutive
ordering π(⪯), so Aut(X) acts on consecutive orderings.

Suppose that an MPQ-tree M representing X has the frontier ⪯. For ev-
ery automorphism π ∈ Aut(X), there exists the unique MPQ-tree M ′ with the
frontier π(⪯) which is equivalent to M . We define a mapping

Φ : Aut(X)→ Σ(M)

such that Φ(π) is the sequence of equivalent transformations which transforms
M to M ′. It is easy to observe that Φ is a group homomorphism.

By Homomorphism Theorem, we know that ℑ(Φ) ∼= Aut(X)/Ker(Φ). The
kernel Ker(Φ) consists of all automorphisms which fix the maximal cliques, so
they permute the vertices inside each twin class. Thus, Ker(Φ) is isomorphic to
a direct product of symmetric groups.

Two MPQ-trees M and M ′ are isomorphic if the underlying PQ-trees are
equal and there exists a permutation π of V (X) which maps each section of M to
the corresponding section of M ′. In other words, M and M ′ are the same when
ignoring the labels of the vertices in the sections. A sequence σ ∈ Σ(M) is called
an automorphism of M if σ(M) ∼= M ; see Figure 2.6. The automorphisms of M
are closed under composition, so they form the automorphism group Aut(M) ≤
Σ(M).

Lemma 2.7. For an MPQ-tree M , we have Aut(M) = ℑ(Φ).

22

Proof. Suppose that π ∈ Aut(X). The sequence σ = Φ(π) transforms M into
σ(M). It follows that σ(M) ∼= M since σ(M) can be obtained from M by
permuting the vertices in the sections by π. So σ ∈ Aut(M) and ℑ(Φ) ≤ Aut(M).

On the other hand, suppose σ ∈ Aut(M). We know that σ(M) ∼= M and let
π be a permutation of V (X) from the definition of the isomorphism. Two vertices
of V (X) are adjacent if and only if they belong to the sections of M on a common
path from the root. This property is preserved in σ(M), so π ∈ Aut(X). Each
maximal clique is the union of all sections on the path from the root to the leaf
representing this clique. Therefore the maximal cliques are permuted by σ the
same as by π. Thus Φ(π) = σ and Aut(M) ≤ ℑ(Φ).

Lemma 2.8. For an MPQ-tree M representing an interval graph X, we have
Aut(X) ∼= Ker(Φ) ⋊ Aut(M).

Proof. Let σ ∈ Aut(M). In the proof of Lemma 2.7, we show that every permu-
tation π from the definition of σ(M) ∼= M is an automorphism of X mapped by Φ
to σ. Now, we want to choose these permutations consistently for all elements of
Aut(M) as follows. Suppose that id = σ1, σ2, . . . , σn are the elements of Aut(M).
We want to find id = π1, π2, . . . , πn such that Φ(πi) = σi and if σiσj = σk, then
πiπj = πk. In other words, H = {π1, . . . , πn} is a subgroup of Aut(X) and Φ ↾H

is an isomorphism between H and Aut(M) = ℑ(Φ).
Suppose that π, π′ ∈ Aut(X) such that Φ(π) = Φ(π′). Then π and π′ permute

the maximal cliques the same and they can only act differently on twin vertices,
i.e., ππ′−1 ∈ Ker(Φ). Suppose that C is a twin class, then π(C) = π′(C) but
they can map the vertices of C differently. To define π1, . . . , πn, we need to define
them on the vertices of the twin classes consistently. To do so, we arbitrarily
order the vertices in each twin class. For each πi, we know how it permutes the
twin classes, suppose a twin class C is mapped to a twin class πi(C). Then we
define πi on the vertices of C in such a way that the orderings are preserved.

The above construction of H is correct. Since H is the complementary sub-
group of Ker(Φ), we get Aut(X) as the internal semidirect product Ker(Φ)⋊H ∼=
Ker(Φ) ⋊ Aut(M). Our approach is similar to the proof of Theorem 1.10, and
the external semidirect product can be constructed in the same way.

2.3.3 The inductive characterization
Let X be an interval graph, represented by an MPQ-tree M . By Lemma 2.8,
Aut(X) can be described from Aut(M) and Ker(Φ). We build Aut(X) inductively
using M , similarly as in Theorem 1.11.

M1

2 3

{4} {5} {6, 7} {8, 9}

σ

σ(M)1

2 3

{4} {5} {8, 9} {6, 7}

Figure 2.6: The sequence σ, which transposes the children of the P-node with
the section {3}, is an automorphism since σ(M) ∼= M . On the other hand, the
transposition of the children the root P-node is not an automorphism.

23

X1 X2(b)
Y Y . . . Y

{

n

(c)

Figure 2.7: The constructions in the proof of Theorem 2.1(i).

Proof of Theorem 2.1(i). We show that Aut(INT) is closed under (b), (c) (defined
in the statement of Theorem 1.11); see Figure 2.7. For (b), we attach interval
graphs X1 and X2 such that Aut(Xi) = Gi to an asymmetric interval graph. For
(c), let G ∈ Aut(INT) and let Y be a connected interval graph with Aut(Y) ∼= G.
We construct X as the disjoint union of n copies of Y .

For the converse, let M be an MPQ-tree representing an interval graph X.
Without a loss of generality we assume that X is connected. Let M1, . . . ,Mk

be the subtrees of the root of M and let Xi be the interval subgraphs in-
duced by the vertices of the sections of Mi. We want to build Aut(X) from
Aut(X1), . . . ,Aut(Xk) using (b) and (c).

Case 1: The root is a P-node P . Clearly, each Xi, for i = 1, . . . , k, is con-
nected. Each sequence σ ∈ Aut(M) corresponds to interior sequences in Aut(Mi)
and some reordering σ′ of M1, . . . ,Mk. If σ′(Mi) = Mj, then necessarily Xi

∼= Xj.
Thus, by applying Theorem 1.10, we obtain the pointwise-stabilizer Aut(X)(sec(P))
of sec(P). Finally, it is easy to see that Aut(X) ∼= Aut(X)(sec(P)) × S| sec(P)|.

Case 2: The root is a Q-node Q. Let M1, . . . ,Mk be its children from left to
right. We call Q symmetric if it is transformed by some sequence of Aut(M), and
asymmetric otherwise. If Q is asymmetric, then Aut(M) is the direct product
Aut(X1), . . . ,Aut(Xk) together with the symmetric groups for all twin classes of
sec(Q), so it can be build using (b). If Q is symmetric, each sequence σ ∈ Aut(M)
corresponds to interior sequences in Aut(Mi) and σ′, which reverses the order of
the subtrees M1, . . . ,Mk. Let G1 be the direct product of the left part of the
children and twin classes, and G2 the one of the middle part. By Lemma 1.8, we
get

Aut(X) ∼= (G2
1, G2) ≀≀ Z2 ∼= (G2

1) ≀≀ Z2 ×G2 ∼= G1 ≀ Z2 ×G2.

Therefore Aut(X) can be constructed using (b) and (c).

C1 C2 C3

C2 C1 C3

C1 C3 C2

C2 C3 C1

C3 C1 C2

C3 C2 C1

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Aut(R5)

Aut(R6)

π π π

Figure 2.8: An interval graph with six non-equivalent representation. The action
of Aut(X) has three isomorphic orbits.

24

2.3.4 The action on interval representations
For an interval graph X, the set Rep consists of all assignments of closed intervals
which define X. It is natural to consider two interval representations equivalent
if one can be transformed into the other by continuous shifting of the endpoints
of the intervals while preserving the correctness of the representation. Then the
representations of Rep/∼ correspond to consecutive orderings of the maximal
cliques; see Figure 2.8 and 2.9.

We interpret our results in terms of the action of Aut(X) on the set Rep. In
Lemma 2.8, we proved that Aut(X) ∼= Ker(Φ)⋊Aut(M) whereM is an MPQ-tree.
If an automorphism belongs to Aut(R), then it fixes the ordering of the maximal
cliques and it can only permute twin vertices. Therefore Aut(R) = Ker(Φ) since
each twin class consists of equal intervals, so they can be arbitrarily permuted
without changing the representation. Every stabilizer Aut(R) is the same and
every orbit of the action of Aut(X) is isomorphic, as in Figure 2.8.

Different orderings of the maximal cliques correspond to different reorderings
of M . The defined Aut(M) ∼= Aut(X)/Aut(R) describes morphisms of repre-
sentations belonging to one orbit of the action of Aut(X), which are the same
representations up to the labeling of the intervals; see Figure 2.8 and Figure 2.9.

2.3.5 Direct constructions
In this section, we explain Theorem 2.1(i) by direct constructions. The first
construction answers the open problem of Hanlon [88].

Lemma 2.9. For X ∈ INT, there exists T ∈ TREE such that Aut(X) ∼= Aut(T).

Proof. Consider an MPQ-tree M representing X. We know that Aut(X) ∼=
Ker(Φ) ⋊ Aut(M) and we inductively encode the structure of M into T .

Case 1: The root is a P-node P . Its subtrees can be encoded by trees and we
just attach them to a common root. If sec(P) is non-empty, we attach a star with
| sec(P)| leaves to the root (and we subdivide it to make it non-isomorphic to every
other subtree attached to the root); see Figure 2.10a. We get Aut(T) ∼= Aut(X).

C1C2C3C4C5C6

C6C5C3C4C2C1

C6C5C4C3C2C1

C1C2C4C3C5C6

πQ

πP πQ

πP

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Figure 2.9: The action of Aut(X) is transitive. An MPQ-tree M of X is depicted
in Figure 2.5. There are three twin classes of size two, so Aut(R) ∼= Z3

2. The
group Aut(M) is generated by πQ corresponding to flipping the Q-node, and πP

permuting the P-node. We have Aut(M) ∼= Z2
2 and Aut(X) ∼= Z3

2 ⋊ Z2
2.

25

T1

T4 T5

T2 T3 sec(P)

(a)
T1

TW1

T2

TW2
TW3 T3

(b) (c)
T1 T2 T1

Figure 2.10: For an interval graph X, a construction of a tree T with Aut(T) ∼=
Aut(X): (a) The root is a P-node. (b) The root is an asymmetric Q-node. (c)
The root is a symmetric Q-node.

Case 2: The root is a Q-node Q. If Q is asymmetric, we attach the trees
corresponding to the subtrees of Q and stars corresponding to the vertices of
twin classes in the sections of Q to a path, and possibly modify by subdivisions
to make it asymmetric; see Figure 2.10b. And if Q is symmetric, then Aut(X) ∼=
(G2

1 × G3) ⋊ Z2 and we just attach trees T1 and T2 such that Aut(Ti) ∼= Gi to a
path as in Figure 2.10c. In both cases, Aut(T) ∼= Aut(X).

Lemma 2.10. For T ∈ TREE, there exists X ∈ INT such that Aut(T) ∼= Aut(X).

Proof. For a rooted tree T , we construct an interval graph X such that Aut(T) ∼=
Aut(X) as follows. The intervals are nested according to T as shown in Fig-
ure 2.11. Each interval is contained exactly in the intervals of its ancestors. If T
contains a vertex with only one child, then Aut(T) < Aut(X). This can be fixed
by adding suitable asymmetric interval graphs Y , as in Figure 2.11.

2.3.6 Automorphism groups of unit interval graphs
We apply the characterization of Aut(INT) derived in Theorem 2.1(i) to show
that the automorphism groups of connected unit interval graphs are the same as
the automorphism groups of the caterpillars (which form the intersection of INT
and TREE). First, we describe Aut(CATERPILLAR):

Lemma 2.11. The class Aut(CATERPILLAR) consists of all groups G1 and G1 ≀
Z2×G2 where G1 is a direct product of symmetric groups and G2 is a symmetric
group.

Proof. We can easily construct caterpillars with these automorphism groups. On
the other hand, the root of an MPQ-tree M representing T is a Q-node Q (or a
P-node with at most two children, which is trivial). All twin classes are trivial,
since T is a tree. Each child of the root is either a P-node, or a leaf. All
children of a P-node are leaves. We can determine Aut(X) as in the proof of
Theorem 2.1(i).

T X X
Y

Y

Figure 2.11: We place the intervals following the structure of the tree. We get
Aut(X) ∼= S3×S2×S3, but Aut(T) ∼= S2×S3. We fix this by attaching asymmetric
interval graphs Y .

26

Proof of Theorem 2.1(ii). According to Corneil [44], an MPQ-tree M represent-
ing a connected unit interval graph contains only one Q-node with all children
as leaves. It is possible that the sections of this Q-node are nontrivial. This
equality of automorphism groups follows by Lemma 2.11 and the proof of Theo-
rem 2.1(i).

2.4 Automorphism groups of circle graphs
In this section, we prove Theorem 2.2. We introduce the split decomposition. We
encode the split decomposition of X by a split tree S which captures all circle
representations of X. We define automorphisms of S and show that Aut(S) ∼=
Aut(X).

2.4.1 Split decomposition

A split is a partition (A,B,A′, B′) of V (X) such that:

• For every a ∈ A and b ∈ B, we have ab ∈ E(X).

• There are no edges between A′ and B ∪B′, and between B′ and A ∪ A′.

• Both sides have at least two vertices: |A ∪ A′| ≥ 2 and |B ∪B′| ≥ 2.

The split decomposition D of X is a collection of graphs constructed by taking
a split of X and replacing X by the graphs XA and XB defined as follows. The
graph XA is created from X[A ∪ A′] together with a new marker vertex mA

adjacent exactly to the vertices in A. The graph XB is defined analogously for B,
B′ and mB; see Figure 2.12a. The decomposition is then applied recursively on
XA and XB. Graphs containing no splits are called prime graphs. We stop the
split decomposition also on degenerate graphs which are complete graphs Kn and
stars K1,n. A split decomposition is called minimal if it is constructed by the least
number of splits. Cunningham [47] proved that the minimal split decomposition
of a connected graph is unique.

The key connection between the split decomposition and circle graphs is the
following: a graph X is a circle graph if and only if both XA and XB are. In
other words, a connected graph X is a circle graph if and only if all prime graphs
obtained by the minimal split decomposition are circle graphs.

X

B

A′ A

mA mB
split

XA XB

12
3

4

5

6 7

8

9

10

1

23

4 5

6

7

8

9

10

X S(a) (b)

Figure 2.12: (a) An example of a split of the graph X. The marker vertices are
depicted in white. The tree edge is depicted by a dashed line. (b) The split tree
S of the graph X. We have that Aut(S) ∼= Z5

2 ⋊D5.

27

Split tree. A split decomposition D of G is represented by the following graph-
labeled tree T called the split tree T of D (or a split tree T of G). Initially, T
consists of a single node equal to G. At each step, D applies a split on one node
N of T . This node is replaced by two new nodes NA and NB while the tree edges
incident to N are preserved in NA and NB and the marker vertices mA and mB

are further adjacent by a newly formed tree edge. Figure 2.12 shows an example.
Next, we prove that the split tree S captures the adjacencies in X.

Lemma 2.12. We have xy ∈ E(X) if and only if there exists an alternating path
xm1m2 . . .mky in S such that each mi is a marker vertex and precisely the edges
m2i−1m2i are tree edges.

Proof. Suppose that xy ∈ E(X). We prove existence of an alternating path
between x and y by induction according to the length of this path. If xy ∈ E(S),
then it clearly exists. Otherwise the split tree S was constructed by applying a
split decomposition. Let Y be the graph in this decomposition such that xy ∈
E(Y) and there is a split (A,B,A′, B′) in Y in this decomposition such that
x ∈ A and y ∈ B. We have x ∈ V (YA), xmA ∈ E(YA), y ∈ V (YB), and
ymB ∈ E(YB). By induction hypothesis, there exist alternating paths between x
and mA and between mB and y in S. There is a tree edge mAmB, so by joining
we get an alternating path between x and y. On the other hand, if there exists an
alternating path xm1 . . .mky in S, by joining all splits, we get xy ∈ E(X).

2.4.2 Automorphisms of split trees
In [75], split trees are defined in terms of graph-labeled trees. Our definition
is more suitable for automorphisms. An automorphism of a split tree S is an
automorphism of S which preserves the types of vertices and edges, i.e, it maps
marker vertices to marker vertices, and tree edges to tree edges. We denote the
automorphism group of S by Aut(S).

Lemma 2.13. If S is a split tree representing a graph X, then Aut(S) ∼= Aut(X).

Proof. First, we show that each σ ∈ Aut(S) induces a unique automorphism π of
X. Since V (X) ⊆ V (S), we define π = σ ↾V (X). By Lemma 2.12, xy ∈ E(X) if
and only if there exists an alternating path between them in S. Automorphisms
preserve alternating paths, so xy ∈ E(X) ⇐⇒ π(x)π(y) ∈ E(X).

On the other hand, we show that π ∈ Aut(X) induces a unique automorphism
σ ∈ Aut(S). We define σ ↾V (X)= π and extend it recursively on the marker
vertices. Let (A,B,A′, B′) be a split of the minimal split decomposition in X.
This split is mapped by π to another split (C,D,C ′, D′) in the minimal split
decomposition, i.e., π(A) = C, π(A′) = C ′, π(B) = D, and π(B′) = D′. By
applying the split decomposition to the first split, we get the graphs XA and
XB with the marker vertices mA ∈ V (XA) and mB ∈ V (XB). Similarly, for the
second split we get XC and XD with mC ∈ V (XC) and mD ∈ V (XD). Since
π is an automorphism, we have that XA

∼= XC and XB
∼= XD. It follows that

the unique split trees of XA and XC are isomorphic, and similarly for XB and
XD. Therefore, we define σ(mA) = mC and σ(mB) = mD, and we finish the rest
recursively. Since σ is an automorphism at each step of the construction of S, it
follows that σ ∈ Aut(S).

28

Similarly as for trees, there exists a center of S which is either a tree edge, or
a prime or degenerate node. If the center is a tree edge, we can modify the split
tree by adding two adjacent marker vertices in the middle of the tree edge. This
clearly preserves the automorphism group Aut(S), so from now on we assume that
S has a center C which which is a prime or degenerate node. We can assume
that S is rooted by C, and for a node N , we denote by S[N] the subtree induced
by N and its descendants. For N ̸= C, we call m its root marker vertex if it is
the marker vertex of N attached to the parent of N .

Recursive construction. We can describe Aut(S) recursively from the leaves
to the root C. Let N be an arbitrary node of S and consider all its descendants.
Let StabS[N](x) be the subgroup of Aut(S[N]) which fixes x ∈ V (S[N]). We
further color the non-root marker vertices in N by colors coding isomorphism
classes of the subtrees attached to them.

Lemma 2.14. Let N ̸= C be a node with the root marker vertex m. Let
N1, . . . , Nk be the children of N with the root marker vertices m1, . . . ,mk. Then

StabS[N](m) ∼=
(︂
StabS[N1](m1)× · · · × StabS[Nk](mk)

)︂
⋊ StabN(m),

where StabN(m) is color preserving.

Proof. We proceed similarly as in the proof of Theorem 1.10. We isomorphically
label the vertices of the isomorphic subtrees S[Ni]. Each automorphism π ∈
StabS[N](m) is a composition of two automorphisms σ · τ where σ maps each
subtree S[Ni] to itself, and τ permutes the subtrees as in π while preserving the
labeling. Therefore, the automorphisms σ can be identified with the elements of
the direct product StabS[N1](m1)× · · · × StabS[Nk](mk) and the automorphisms τ
with the elements of StabN(m). The rest goes along the same lines as the proof
of Theorem 1.10.

The entire automorphism group Aut(S) is obtained by joining these subgroups
at the central node C. No vertex in C has to be fixed by Aut(S).

Lemma 2.15. Let C be the central node with the children N1, . . . , Nk with the
root marker vertices m1, . . . ,mk. Then

Aut(S) ∼=
(︂
StabS[N1](m1)× · · · × StabS[Nk](mk)

)︂
⋊ Aut(C),

where Aut(C) is color preserving.

Proof. Similar as the proof of Lemma 2.14.

2.4.3 The action on prime circle representations
For a circle graph X with |V (X)| = ℓ, a representation R is completely deter-
mined by a circular word r1r2 · · · r2ℓ such that each ri ∈ V (X) and each vertex
appears exactly twice in the word. This word describes the order of the endpoints
of the chords in R when the circle is traversed from some point counterclockwise.
Two chords intersect if and only if their occurrences alternate in the circular

29

word. Representations are equivalent if they have the same circular words up to
rotations and reflections.

The automorphism group Aut(X) acts on the circle representations in the
following way. Let π ∈ Aut(X), then π(R) is the circle representation represented
by the word π(r1)π(r2) · · · π(r2ℓ), i.e., the chords are permuted according to π.

Lemma 2.16. Let X be a prime circle graph. Then Aut(X) is isomorphic to
a subgroup of a dihedral group.

Proof. According to [71], each prime circle graph has a unique representation R,
up to rotations and reflections of the circular order of endpoints of the chords.
Therefore, for every automorphism π ∈ Aut(X), we have π(R) = R, so π only
rotates/reflects this circular ordering. An automorphism π ∈ Aut(X) is called
a rotation if there exists k such that π(ri) = ri+k, where the indexes are used
cyclically. The automorphisms, which are not rotations, are called reflections,
since they reverse the circular ordering. For each reflection π, there exists k such
that π(ri) = rk−i. Notice that composition of two reflections is a rotation. Each
reflection either fixes two endpoints in the circular ordering, or none of them.

If no non-identity rotation exists, then Aut(X) is either Z1, or Z2. If at least
one non-identity rotation exists, let ρ ∈ Aut(X) be the non-identity rotation
with the smallest value k, called the basic rotation. Observe that ⟨ρ⟩ contains all
rotations, and if its order is at least three, then the rotations act semiregularly
on X. If there exists no reflection, then Aut(X) ∼= Zn. Otherwise, ⟨ρ⟩ is a
subgroup of Aut(X) of index two. Let φ be any reflection, then ρφρ = φ and
Aut(X) ∼= Dn.

Lemma 2.17. Let X be a prime circle graph and let m ∈ V (X). Then StabX(m)
is isomorphic to a subgroup of Z2

2.

Proof. Let mAm̂B be a circular ordering representing X, where m and m̂ are
the endpoints of the chord representing m, and A and B are sequences of the
endpoints of the remaining chords. We distinguish m and m̂ to make the action
of StabX(m) understandable. Every π ∈ StabX(m) either fixes both m and m̂,
or swaps them.

Let A′ be the reflection of A and B′ be the reflection of B. If both m and m̂
are fixed, then by the uniqueness this representation can only be reflected along
the chord m. If such an automorphism exists in StabX(m), we denote it by φm

and we have φm(mAm̂B) = mB′m̂A′. If m and m̂ are swapped, then by the
uniqueness this representation can be either reflected along the line orthogonal to
the chord m, or by the 180◦ rotation. If these automorphisms exist in StabX(m),
we denote them by φ⊥ and ρ, respectively. We have φ⊥(mAm̂B) = m̂A′mB′ and
ρ(mAm̂B) = m̂BmA. Figure 2.13 shows an example.

All three automorphisms φm, φ⊥ and ρ are involutions, and ρ = φ⊥ · φm.
Since StabX(m) is generated by those which exist, it is a subgroup of Z2

2.

2.4.4 The inductive characterization
By Lemma 2.13, it is sufficient to determine the automorphism groups of split
trees. We proceed from the leaves to the root, similarly as in Theorem 1.11.

30

m

m̂

11
2

2

3

3
4 4

5

5

6

6

m

m̂

11
6

6

5

5
4 4

3

3

2

2

m̂

m

44
5

5

6

6
1 1

2

2

3

3

m̂

m

44
3

3

2

2
1 1

6

6

5

5

ϕm ϕ⊥

ϕ⊥ ϕm

Figure 2.13: A prime circle graph X with StabX(m) ∼= Z2
2.

X1 X2

x

x1 x2

(b) (c)

Y Y . . . Y

x

y y y

{ n
(d)

X1

X1 X1

X1

X2

X2

X3 X3

x

Figure 2.14: The construction of the group in (d). The eight-cycle in X can be
reflected horizontally, vertically and rotated by 180◦.

Lemma 2.18. The class Σ defined in Theorem 2.2 consists of the following
groups:

Σ =
{︂
G : X ∈ connected CIRCLE, x ∈ V (X), G ∼= StabX(x)

}︂
. (2.1)

Proof. First, we show that (2.1) is closed under (b) to (d); see Figure 2.14. For
(b), let X1 and X2 be circle graphs such that StabXi

(xi) ∼= Gi. We construct X
as in Figure 2.14b, and we get StabX(x) ∼= G1 × G2. For (c), let Y be a circle
graph with StabY (y) ∼= G. As X, we take n copies of Y and add a new vertex
x adjacent to all copies of y. Clearly, we get StabX(x) ∼= G ≀ Sn. For (d), let
G1, G2, G3 ∈ Σ, and let Xi be a circle graph with StabXi

(xi) ∼= Gi. We construct
a graph X as shown in Figure 2.14. We get StabX(x) ∼= (G4

1, G
2
2, G

2
3) ≀≀ Z2

2.
Next we show that every group from (2.1) belongs to Σ. Let X be a circle

graph with x ∈ V (X), and we want to show that StabX(x) ∈ Σ. Since Aut(S) ∼=
Aut(X) by Lemma 2.13, we have StabS(x) ∼= StabX(x) where x is a non-marker
vertex. We prove this by induction according to the number of nodes of S, for the
single node it is either a subgroup Z2

2 (by Lemma 2.17), or a symmetric group.
Let N be the node containing x, we can think of it as the root and x being a

root marker vertex. Therefore, by Lemma 2.14, we have

StabS(x) ∼=
(︂
StabS[N1](m1)× · · · × StabS[Nk](mk)

)︂
⋊ StabN(x),

where N1, . . . , Nk are the children of N and m1, . . . ,mk their root marker vertices.
By the induction hypothesis, StabS[Ni](mi) ∈ Σ. There are two cases:

Case 1: N is a degenerate node. Then StabN(x) is a direct product of sym-
metric groups. The subtrees attached to marker vertices of each color class can

31

Y

Y

Y Y

Y

X2X1

X1

X2

X1

X1

X2

X1 X1

X2

X1

X1

X2

X1

X1

Figure 2.15: The construction of the described groups.

be arbitrarily permuted, independently of each other. Therefore StabS(x) can be
constructed using (b) and (c), exactly as in Theorem 1.10.

Case 2: N is a prime node. By Lemma 2.17, StabN(x) is a subgroup of Z2
2.

When it is trivial or Z2, observe that StabS(x) can be constructed using (b) and
(c). The only remaining case is when it is Z2

2. The action of Z2
2 on {m1, . . . ,mk}

has orbits {Ω1, . . . ,Ωm} of possible sizes 1, 2, and 4. By Lemma 1.4, actions of
Z2

2 on the orbits of size 2 are either isomorphic to its action on the vertices or
on the edges of an 2-gon. Thus, without a loss of generality, there are integers
0 ≤ t1 ≤ t2 ≤ t3 ≤ m such that the orbits Ω1, . . . ,Ωt1 are of size 1, Ωt1+1, . . . ,Ωt2

are of size 2, Ωt2+1, . . . ,Ωt3 are of size 2, Ωt3+1, . . . ,Ωm are of size 4, and the
Z2

2-spaces (Z2
2,Ωi) and (Z2

2,Ωj), for t1 + 1 ≤ i ≤ t2 and t2 + 1 ≤ j ≤ t3, are
non-isomorphic. Then, we have

StabS(x) ∼=
⎛⎝ t1∏︂

i=1
Ki ×

t2∏︂
i=t1+1

K2
i ×

t3∏︂
i=t2+1

K2
i ×

m∏︂
i=t3+1

K4
i

⎞⎠ ⋊ Z2
2,

where Ki ∈ Σ, for i = 1, . . . ,m, by induction. Denote G1 = K1, . . . , Kt1 , G2 =
Kt1+1, . . . , Kt2 , G3 = Kt1+2, . . . , Kt3 , G4 = Kt1+3, . . . , Km. By Lemma 1.8,

StabS(x) ∼= G1 × (K2
t1+1, . . . , K

2
t3 , K

4
t3+1, . . . , K

4
m) ≀≀ Z2

2.

By Lemma 1.9,
StabS(x) ∼= G1 × (G2

2, G
2
3, G

4
4) ≀≀ Z2

2,

which belongs to Σ.

Now, we prove Theorem 2.2.

Proof of Theorem 2.2. We first prove that Aut(connected CIRCLE) contains all
described groups. Let G ∈ Σ and let Y be a connected circle graph with
StabY (y) ∼= G. We take n copies of Y and attach them by y to the graph depicted
in Figure 2.15 on the left. Clearly, we get Aut(x) ∼= Gn⋊Zn. Let G1, G2 ∈ Σ and
let X1 and X2 be connected circle graphs such that StabXi

(xi) ∼= Gi and X1 ̸∼= X2.
We construct a graph X by attaching n copies of X1 by x1 and 2n copies of X2
by x2 as in Figure 2.15 on the right. We get Aut(X) ∼= (Gn

1 ×G2n
2) ⋊Dn.

Let X be a connected circle graph, we want to show that Aut(X) can be
constructed in the above way. Let S be its split tree, by Lemma 2.13 we have
Aut(S) ∼= Aut(X). For the central node C, we get by Lemma 2.15 that

Aut(S) ∼=
(︂
StabS[N1](m1)× · · · × StabS[Nk](mk)

)︂
⋊ Aut(C),

32

where N1, . . . , Nk are children of C and m1, . . . ,mk are their root marker vertices.
By Lemma 2.18, we know that each StabS[Ni] ∈ Σ and also ∏︁ StabS[Ni](mi) ∈ Σ.
The rest follows by analysing the automorphism group Aut(C) and its orbits.

Case 1: C is a degenerate node. This is exactly the same as Case 1 in the
proof of Lemma 2.18. We get that Aut(S) ∈ Σ, so it is the semidirect product
with Z1.

Case 2: C is a prime node. By Lemma 2.16, we know that Aut(C) is iso-
morphic to either Zn, or Dn. If n ≤ 2, we can show by a similar argument that
Aut(S) ∈ Σ.

If Aut(C) ∼= Zn, where n ≥ 3, then by Lemma 2.16 we know that Aut(C)
consists of rotations which act semiregularly. Therefore each orbit of Aut(C) is of
size n and Aut(C) acts isomorphically on them. Let G ∈ Σ be the direct product
of StabS[Ni](mi), one for each orbit of Aut(C). It follows that

Aut(S) ∼= Gn ⋊ Aut(C) = G ≀ Zn.

Let Aut(C) ∼= Dn, where n ≥ 2 even. The action of Dn on {m1, . . . ,mk}
has orbits {Ω1, . . . ,Ωm} of possible sizes 1, 2, and 4. By Lemma 1.4, actions of
Dn on the orbits of size n are either isomorphic to its action on the vertices or
on the edges of an n-gon. Thus, without a loss of generality, there are integers
0 ≤ t1 ≤ t2 ≤ t3 ≤ m such that the orbits Ω1, . . . ,Ωt1 are of size 1, Ωt1+1, . . . ,Ωt2

are of size n, Ωt2+1, . . . ,Ωt3 are of size n, Ωt3+1, . . . ,Ωm are of size 2n, and the
Dn-spaces (Dn,Ωi) and (Dn,Ωj), for t1 + 1 ≤ i ≤ t2 and t2 + 1 ≤ j ≤ t3, are
non-isomorphic. Then, we have

Aut(S) ∼=
⎛⎝ t1∏︂

i=1
Ki ×

t2∏︂
i=t1+1

Kn
i ×

t3∏︂
i=t2+1

Kn
i ×

m∏︂
i=t3+1

K2n
i

⎞⎠ ⋊ Z2
2,

where Ki ∈ Σ, for i = 1, . . . ,m. Denote G1 = K1, . . . , Kt1 , G2 = Kt1+1, . . . , Kt2 ,
G3 = Kt1+2, . . . , Kt3 , G4 = Kt1+3, . . . , Km. By Lemma 1.8,

Aut(C) ∼= G1 × (K2
t1+1, . . . , K

2
t3 , K

4
t3+1, . . . , K

4
m) ≀≀ Dn.

By Lemma 1.9,
Aut(C) ∼= G1 × (Gn

2 , G
n
3 , G

2n
4) ≀≀ Dn,

which belongs to Aut(connected CIRCLE). The proof for the case when n ≥ 3
and odd is the same. The only difference is that by Lemma 1.4 all orbits of size
n are isomorphic. Thus in this case we get Aut(C) ∼= G1 × (Gn

2 , G
2n
3) ≀≀ Dn, for

some G1, G2, G3 ∈ Σ.

2.4.5 The action on circle representations
For a connected circle graph X, the set Rep/∼ consists of all circular orderings of
the endpoints of the chords which give a correct representation of X. Then π(R)
is the representation in which the endpoints are mapped by π. The stabilizer
Aut(R) can only rotate/reflect this circular ordering, so it is a subgroup of a
dihedral group. For prime circle graphs, we know that Aut(R) = Aut(X). A
general circle graph may have many different representations, and the action of
Aut(X) on them may consist of several non-isomorphic orbits and Aut(R) may
not be a normal subgroup of Aut(X).

33

M1

M2

M3

M4 M5
M6

(a) (b)

m1 m2 m4 m5 m6

m3

Figure 2.16: (a) A graph X and a modular partition P =
{M1,M2,M3,M4,M5,M6}. (b) The quotient graph X/P is prime.

The above results have the following interpretation in terms of the action
of Aut(X). By Lemma 2.13, we know that Aut(S) ∼= Aut(X). We assume
that the center C is a prime circle graph, otherwise Aut(R) is very restricted
(Z1 or Z2) and not very interesting. We choose a representation R belonging
to the smallest orbit, i.e., R is one of the most symmetrical representations.
Then Aut(R) consists of the rotations/reflections of C described in the proof of
Theorem 2.2.

The action of Aut(X) on this orbit is described by the point-wise stabilizer H
of C in Aut(S). We know that H = ∏︁ StabS[Ni](mi) as described in Lemma 2.18.
When Ni is a prime graph, we can apply reflections and rotations described in
Lemma 2.17, so we get a subgroup of Z2

2. If Ni is a degenerate graph, then
isomorphic subtrees can be arbitrarily permuted which corresponds to permuting
small identical parts of a circle representation. It follows that Aut(X) ∼= H ⋊
Aut(R).

2.5 Comparability and permutation graphs
All transitive orientations of a graph are efficiently captured by the modular
decomposition which is encoded by the modular tree.

We study the induced action of Aut(X) on the set of all transitive orientations.
We show that this action can be reconstructed from the modular tree, but for
general comparability graphs the stabilizers can be arbitrary groups. In the case
of permutation graphs, we study the action of Aut(X) on the pairs of orientations
of the graph and its complement, and show that it is fixed-point-free. From this,
we deduce Theorem 2.3. Finally, we show that an arbitrary graph can be encoded
into a comparability graph of the dimension at most four, while preserving the
automorphism group and isomorphism relation, which establishes Theorem 2.5.

2.5.1 Modular decomposition
A set M ⊆ V (X) is a module if each x ∈ V (X)\M is either adjacent to all vertices
in M , or to none of them. Modules generalize connected components, but one
module can be a proper subset of another one. Therefore, modules lead to a
recursive decomposition of a graph, instead of just a partition. See Figure 2.16a
for examples. A module M is called trivial if M = V (X) or |M | = 1, and
non-trivial otherwise.

If M and M ′ are two disjoint modules, then either the edges between M
and M ′ induce a complete bipartite subgraph, or there are no edges at all; see
Figure 2.16a. In the former case, M and M ′ are called adjacent, otherwise they
are non-adjacent.

34

Quotient graphs. Let P = {M1, . . . ,Mk} be a modular partition of V (X), i.e.,
each Mi is a module of X, Mi∩Mj = ∅ for every i ̸= j, and M1∪· · ·∪Mk = V (X).
We define the quotient graph X/P with the vertices m1, . . . ,mk corresponding
to M1, . . . ,Mk where mimj ∈ E(X/P) if and only if Mi and Mj are adjacent. In
other words, the quotient graph is obtained by contracting each module Mi into
the single vertex mi; see Figure 2.16.

Modular decomposition. To decompose X, we find some modular partition
P = {M1, . . . ,Mk} of X, compute X/P and recursively decompose X/P and
each X[Mi], for i = 1, . . . , k. The recursive process terminates on prime graphs
which are graphs containing only trivial modules. There might be many such
decompositions, for different choices of P in each step. In 1967, Gallai [72] de-
scribed the modular decomposition which implicitly represents all decompositions
by choosing special modular partitions.

Modular decomposition is based on the observation that if M is a module of
X, then M ′ ⊆M is a module of X if and only if it is a module of X[M]. A graph
is called degenerate if it is a complete graph or an edge-less graph. We construct
the modular decomposition of a graph X in the following way; see Figure 2.17:

• If X is a prime or a degenerate graph, then we terminate.

• Let X and X be connected graphs. Let P be the inclusion maximal proper
subsets of V (X) which are modules. Gallai [72] proved that P is a modular
partition of X and X/P is a prime graph; see Figure 2.16. We recursively
decompose X[M] for each M ∈ P .

• Let X be disconnected and X is connected. The connected components
form a modular partition P of X, and the quotient graph X/P is an inde-
pendent set. We recursively decompose X[M] for each M ∈ P .

• Let X be disconnected and X be connected. The connected components
of X form a modular partition P of X and the quotient graph X/P is a
complete graph. We recursively decompose X[M] for each M ∈ P .

Modular decomposition is unique [72]. This is guaranteed by the special choice
of a modular partition in every step and by terminating when the graph is de-
generate.

Modular tree. We encode the modular decomposition by the modular tree T .
The modular tree T is a graph with two types of vertices: (normal and marker
vertices) and two types of edges (normal and directed tree edges). The directed

(a) (b)

Figure 2.17: (a) The graph X from Figure 2.16 with the modular partitions used
in the modular decomposition. (b) The modular tree T of X, the marker vertices
are white, the tree edges are dashed.

35

tree edges connect the prime and degenerate graphs encountered in the modular
decomposition (as quotients and terminal graphs) into a rooted tree.

We give a recursive definition. Every modular tree has an induced subgraph
called root node. If X is a prime or a degenerate graph, we define T = X
and its root node equals T . Otherwise, let P = {M1, . . . ,Mk} be the used
modular partition of X and let T1, . . . , Tk be the modular trees corresponding to
X[M1], . . . , X[Mk]. The modular tree T is the disjoint union of T1, . . . , Tk and
of X/P with the marker vertices m1, . . . ,mk. To every graph Ti, we add a new
marker vertex m′

i such that m′
i is adjacent exactly to the vertices of the root node

of Ti. We further add a tree edge oriented from mi to m′
i. For an example, see

Figure 2.17b.
The modular tree of X is unique. The graphs encountered in the modular

decomposition are called nodes of T , or alternatively root nodes of some modular
trees in the construction of T . For a node N , its subtree is the modular tree
which has N as the root node. Leaf nodes correspond to the terminal graphs
in the modular decomposition, and inner nodes are the quotients in the mod-
ular decomposition. All vertices of X are in leaf nodes and all marker vertices
correspond to modules of X. All inner nodes consist of marker vertices.

Similarly as in Lemma 2.12, the modular tree T captures the adjacencies in
X.

Lemma 2.19. We have xy ∈ E(X) if and only if there exists an alternating path
xm1m2 . . .mky in the modular tree T such that each mi is a marker vertex and
precisely the edges m2i−1m2i are tree edges.

Proof. Both x and y belong to leaf nodes. If there exists an alternating path, let
N be the node which is the common ancestor of x and y. This path has an edge
m2im2i+1 in N . These vertices correspond to adjacent modules M2i and M2i+1
such that x ∈M2i and y ∈M2i+1. Therefore xy ∈ E(X).

On the other hand, let N be the common ancestor of x and y, such that mx is
the marker vertex on a path from x to N and similarly my is the marker vertex
for y and N . If xy ∈ E(X), then the corresponding modules Mx and My has to
be adjacent, so we can construct an alternating path from x to y.

2.5.2 Automorphisms of modular trees
An automorphism of the modular tree T has to preserve the types of vertices and
edges and the orientation of tree edges. We denote the automorphism group of
T by Aut(T).

Lemma 2.20. If T is the modular tree of a graph X, then Aut(X) ∼= Aut(T).

Proof. First, we show that each automorphism σ ∈ Aut(T) induces a unique au-
tomorphism of X. Since V (X) ⊆ V (T), we define π = σ ↾V (X). By Lemma 2.19,
xy ∈ E(X) if and only if there exists an alternating path in T connecting them.
Automorphisms preserve alternating paths, so xy ∈ E(X) ⇐⇒ π(x)π(y) ∈
E(X).

For the converse, we prove that π ∈ Aut(X) induces a unique automorphism
σ ∈ Aut(T). We define σ ↾V (X)= π and extend it recursively on the marker
vertices. Let P = {M1, . . . ,Mk} be the modular partition of X used in the

36

modular decomposition. It is easy to see that Aut(X) induces an action on
P . If π(Mi) = Mj, then clearly X[Mi] and X[Mj] are isomorphic. We define
σ(mi) = mj and σ(m′

i) = m′
j, and finish the rest recursively. Since σ is an

automorphism at each step of the construction, it follows that σ ∈ Aut(T).

Recursive Construction. We can build Aut(T) recursively. Let N be the root
node of T . Suppose that we know the automorphism groups Aut(T1), . . . ,Aut(Tk)
of the subtrees T1, . . . , Tk of all children of N . We further color the marker vertices
in N by colors coding isomorphism classes of the subtrees T1, . . . , Tk.

Lemma 2.21. Let N be the root node of T with subtrees T1, . . . , Tk. Then

Aut(T) ∼=
(︂
Aut(T1)× · · · × Aut(Tk)

)︂
⋊ Aut(N),

where Aut(N) is color preserving.

Proof. Recall the proof of Theorem 1.10. We isomorphically label the vertices of
the isomorphic subtrees Ti. Each automorphism π ∈ Aut(T) is a composition of
two automorphisms σ · τ where σ maps each subtree Ti to itself, and τ permutes
the subtrees as in π while preserving the labeling. Therefore, the automorphisms
σ can be identified with the elements of Aut(T1) × · · · × Aut(Tk) and the auto-
morphisms τ with the elements of Aut(N). The rest is exactly as in the proof of
Theorem 1.10.

With no further assumptions on X, if N is a prime graph, then Aut(N) can be
isomorphic to an arbitrary group, as shown in Section 2.5.6. If N is a degenerate
graph, then Aut(N) is a direct product of symmetric groups.

Automorphism groups of interval graphs. In Section 2.3, we proved us-
ing MPQ-trees that Aut(INT) = Aut(TREE). The modular decomposition gives
an alternative derivation that Aut(INT) ⊆ Aut(TREE) by Lemma 2.21 and the
following:

Lemma 2.22. For a prime interval graph X, Aut(X) is a subgroup of Z2.

Proof. Hsu [96] proved that prime interval graphs have exactly two consecutive
orderings of the maximal cliques. Since X has no twin vertices, Aut(X) acts
semiregularly on the consecutive orderings and there is at most one non-trivial
automorphism in Aut(X).

2.5.3 Automorphism groups of comparability graphs
In this section, we explain the structure of the automorphism groups of compa-
rability graphs, in terms of actions on sets of transitive orientations.

Structure of transitive orientations. Let → be a transitive orientation of
X and let T be the modular tree. For modules M1 and M2, we write M1 →M2 if
x1 → x2 for all x1 ∈M1 and x2 ∈M2. Gallai [72] shows the following properties.
If M1 and M2 are adjacent modules of a partition used in the modular decomposi-
tion, then either M1 →M2, or M1 ←M2. The graph X is a comparability graph

37

X T
2

1

4

3

6

5

8

7

1 2 3 4 5 6 7 8

Figure 2.18: Two automorphisms reflect X and change the transitive orientation,
and their action on the modular tree T .

if and only if each node of T is a comparability graph. Every prime comparability
graph has exactly two transitive orientations, one being the reversal of the other.

The modular tree T encodes all transitive orientations as follows. For each
prime node of T , we arbitrarily choose one of the two possible orientations. For
each degenerate node, we choose some orientation. (Where Kn has n! possible
orientations and Kn has the unique orientation.) A transitive orientation of X
is then constructed as follows. We orient the edges of leaf nodes as above. For
a node N partitioned in the modular decomposition by P = {M1, . . . ,Mk}, we
orient X[Mi] → X[Mj] if and only if mi → mj in N . It is easy to check that
this gives a valid transitive orientation, and every transitive orientation can be
constructed by some orientations of the nodes of T . We note that this implies that
the dimension of the transitive orientation is the maximum over the dimensions of
all nodes of T , and that this dimension is the same for every transitive orientation.

Action induced on transitive orientations. Let to(X) be the set of all
transitive orientations of X. Let π ∈ Aut(X) and → ∈ to(X). We define the
orientation π(→) as follows:

x→ y =⇒ π(x) π(→) π(y), ∀x, y ∈ V (X).

We can observe that π(→) is a transitive orientation of X, so π(→) ∈ to(X); see
Figure 2.18. It easily follows that Aut(X) defines an action on to(X).

Let Stab(→) be the stabilizer of some orientation → ∈ to(X). It consists of
all automorphisms which preserve this orientation, so only the vertices that are
incomparable in → can be permuted. In other words, Stab(→) is the automor-
phism group of the poset created from the transitive orientation → of X. Since
posets are universal [18, 155], Stab(→) can be arbitrary group and in general the
structure of Aut(X) cannot be derived from its action on to(X).

Lemma 2.21 allows to understand it in terms of Aut(T) for the modular tree
T representing X. Each automorphism of Aut(T) somehow acts inside each node,
and somehow permutes the attached subtrees. Consider a node N with attached
subtrees T1, . . . , Tk. If σ ∈ Stab(→), then it preserves the orientation in N .
Therefore if it maps Ti to σ(Ti), the corresponding marker vertices are neces-
sarily incomparable in N . If N is an independent set, the isomorphic subtrees
can be arbitrarily permuted in Stab(→). If N is a complete graph, all subtrees
are preserved in Stab(→). If N is a prime graph, then isomorphic subtrees of
incomparable marker vertices can be permuted according to the structure of N
which can be complex.

It is easy to observe that stabilizers of all orientations are the same and that
Stab(→) is a normal subgroup. Let H = Aut(X)/ Stab(→), so H captures the ac-
tion of Aut(X) on to(X). This quotient group can be constructed recursively from

38

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

X X

1

23

45

6

1

23

45

6

ϕv

ϕh ϕv

ϕh

Figure 2.19: The action of Aut(X) on four pairs of transitive orientations X.
The automorphism φv flips the orientation of X, the automorphism φh flips the
orientation of both X and X.

the structure of T , similarly to Lemma 2.21. Suppose that we know H1, . . . , Hk of
the subtrees T1, . . . , Tk. If N is an independent set, there is exactly one transitive
orientation, so H ∼= H1×· · ·×Hk. If N is a complete graph, isomorphic subtrees
can be arbitrarily permuted, so H can be constructed exactly as in Theorem 1.10.
If N is a prime node, there are exactly two transitive orientations. If there ex-
ists an automorphism changing the orientation of N , we can describe H by a
semidirect product with Z2 as in Theorem 1.10. And if N is asymmetric, then
H ∼= H1× · · · ×Hk. In particular, this description implies that H ∈ Aut(TREE).

2.5.4 Automorphism groups of permutation graphs

In this section, we derive the characterization of Aut(PERM) stated in Theo-
rem 2.3.

Action induced on pairs of transitive orientations. Let X be a permu-
tation graph. In comparison to general comparability graphs, the main differ-
ence is that both X and X are comparability graphs. From the results of Sec-
tion 2.5.3 it follows that Aut(X) induces an action on both to(X) and to(X).
Let to(X,X) = to(X) × to(X), and we work with one action on the pairs
(→,→) ∈ to(X,X). Figure 2.19 shows an example.

Lemma 2.23. For a permutation graph X, the action of Aut(X) on to(X,X) is
semiregular.

Proof. Since a permutation belonging to the stabilizer of (→,→) fixes both orien-
tations, it can only permute incomparable elements. But incomparable elements
in → are exactly the comparable elements in →, so the stabilizer is trivial.

Lemma 2.24. For a prime permutation graph X, Aut(X) is a subgroup of Z2
2.

Proof. There are at most four pairs of orientations in to(X,X), so by Lemma 2.23
the order of Aut(X) is at most four. If π ∈ Aut(X), then π2 fixes the orientations
of both X and X. Therefore π2 belongs to the stabilizers and it is an identity.
Thus π is an involution and Aut(X) is a subgroup of Z2

2.

39

6

5

4

3

2

1

4

2

6

1

5

3

4

2

6

1

5

3

6

5

4

3

2

1

3

5

1

6

2

4

1

2

3

4

5

6

1

2

3

4

5

6

3

5

1

6

2

4

ϕv

ϕh ϕv

ϕh

Figure 2.20: Four representations of a symmetric permutation graph. The au-
tomorphism φv is the vertical reflection, the automorphism φh is the horizontal
reflection.

Geometric interpretation. First, we explain the result PERM = 2-DIM of
Even et al. [63]. Let → ∈ to(X) and → ∈ to(X), and let →R be the reversal of
→. We construct two linear orderings L1 = → ∪→ and L2 = → ∪→R. The
comparable pairs in L1 ∩ L2 are precisely the edges E(X).

Consider a permutation representation of a symmetric prime permutation
graph. The vertical reflection φv corresponds to exchanging L1 and L2, which is
equivalent to reversing →. The horizontal reflection φh corresponds to reversing
both L1 and L2, which is equivalent to reversing both → and →. We denote
the central 180◦ rotation by ρ = φh · φv which corresponds to reversing →; see
Figure 2.20.

The inductive characterization. Now, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. First, we show that Aut(PERM) is closed under (b) to
(d). For (b), let G1, G2 ∈ Aut(PERM), and let X1 and X2 be two permutation
graphs such that Aut(Xi) ∼= Gi. We construct X by attaching X1 and X2 as in
Figure 2.21b. Clearly, Aut(X) ∼= G1 × G2. For (c), let G ∈ Aut(PERM) and let
Y be a connected permutation graph such that Aut(Y) ∼= G. We construct X as
the disjoint union of n copies of Y ; see Figure 2.21c. We get Aut(X) ∼= G ≀ Sn.
Let G1, G2, G3 ∈ Aut(PERM), and let X1, X2, and X3 be permutation graphs
such that Aut(Xi) ∼= Gi. We construct X as in Figure 2.21d. We get Aut(X) ∼=
(G4

1, G
2
2, G

2
3) ≀≀ Z2

2.
We show the other implication by induction. Let X be a permutation graph

and let T be the modular tree representing X. By Lemma 2.20, we know that
Aut(T) ∼= Aut(X). Let N be the root node of T , and let T1, . . . , Tk be the
subtrees attached to N . By the induction hypothesis, we assume that Aut(Ti) ∈

X1 X2(b)
Y Y . . . Y

{

n

(c) (d)

X1

X1

X1

X1

X2

X2

X3 X3

Figure 2.21: The constructions in the proof of Theorem 2.3.

40

Aut(PERM). By Lemma 2.21,

Aut(T) ∼=
(︂
Aut(T1)× · · · × Aut(Tk)

)︂
⋊ Aut(N).

Case 1: N is a degenerate node. Then Aut(N) is a direct product of symmetric
groups. The subtrees attached to marker vertices of each color class can be
arbitrarily permuted, independently of each other. Therefore Aut(T) can be
constructed using (b) and (c), exactly as in Theorem 1.10.

Case 2: N is a prime node. By Lemma 2.24, Aut(N) is a subgroup of Z2
2.

If it is trivial or Z2, observe that it can be constructed using (b) and (c). The
only remaining case is when Aut(N) ∼= Z2

2. The action of Z2
2 on V (N) has

orbits {Ω1, . . . ,Ωm} of possible sizes 1, 2, and 4. By Lemma 1.4, actions of Z2
2

on the orbits of size 2 are either isomorphic to its action on the vertices or on
the edges of an 2-gon. Thus, without a loss of generality, there are integers
0 ≤ t1 ≤ t2 ≤ t3 ≤ m such that the orbits Ω1, . . . ,Ωt1 are of size 1, Ωt1+1, . . . ,Ωt2

are of size 2, Ωt2+1, . . . ,Ωt3 are of size 2, Ωt3+1, . . . ,Ωm are of size 4, and the
Z2

2-spaces (Z2
2,Ωi) and (Z2

2,Ωj), for t1 + 1 ≤ i ≤ t2 and t2 + 1 ≤ j ≤ t3, are
non-isomorphic. Then, we have

Aut(T) ∼=
⎛⎝ t1∏︂

i=1
Ki ×

t2∏︂
i=t1+1

K2
i ×

t3∏︂
i=t2+1

K2
i ×

m∏︂
i=t3+1

K4
i

⎞⎠ ⋊ Z2
2,

where Ki ∈ Σ, for i = 1, . . . ,m, by induction. Denote G1 = K1, . . . , Kt1 , G2 =
Kt1+1, . . . , Kt2 , G3 = Kt1+2, . . . , Kt3 , G4 = Kt1+3, . . . , Km. By Lemma 1.8,

Aut(T) ∼= G1 × (K2
t1+1, . . . , K

2
t3 , K

4
t3+1, . . . , K

4
m) ≀≀ Z2

2.

By Lemma 1.9,
Aut(T) ∼= G1 × (G2

2, G
2
3, G

4
4) ≀≀ Z2

2,

which belongs to Aut(PERM).

2.5.5 Bipartite permutation graphs
We use the modular trees to characterize Aut(connected BIP PERM). For a con-
nected bipartite graph, every non-trivial module is an independent set, and the
quotient is a prime bipartite graph. Therefore, the modular tree T has a prime
root node N , to which there are attached leaf nodes which are independent sets.

Proof of Corollary 2.4. Every abstract group from Corollary 2.4 can be con-
structed as shown in Figure 2.22. Let T be the modular tree representing X.
By Lemmas 2.20 and 2.21,

Aut(X) ∼=
(︂
Aut(T1)× · · · × Aut(Tk)

)︂
⋊ Aut(N),

· · ·k1 kℓ

(a) (b)

· · · · · ·k1 kℓ n

m

kℓ k1

(c)

· · ·

· · ·

· · ·

· · ·

k1

k1

kℓ

kℓ

n

n

kℓ

kℓ

k1

k1

Figure 2.22: Let G1 = Sk1 × · · · × Skℓ
, G2 = Sn and G3 = Sm. The constructed

graphs consist of independent sets of given sizes joined by complete bipartite
subgraphs. They have the following automorphism groups: (a) G1, (b) G1 ≀Z2 ×
G2 ×G3, (c) (G4

1, G
2
2) ≀≀ Z2

2.

41

where Aut(N) is isomorphic to a subgroup of Z2
2 (by Lemma 2.24), and each

Aut(Ti) is a symmetric group since Ti is an independent set.
Consider a permutation representation of N in which the endpoints of the

segments, representing V (N), are placed equidistantly as in Figure 2.20. By [142],
there are no segments parallel with the horizontal axis, so the reflections φv and
φh fix no segment. Further, since N is bipartite, there are at most two segments
crossing the central point, so the rotation ρ can fix at most two segments.

Case 1: Aut(N) is trivial. Then Aut(X) is a direct product of symmetric
groups.

Case 2: Aut(N) ∼= Z2. Let G1 be the direct product of all Aut(Ti), one for
each orbit of size two. Notice that Aut(N) is generated by exactly one of φv, φh,
and ρ. For φv or φh, all orbits are of size two, so Aut(X) ∼= G1 ≀ Z2. For ρ, there
are at most two fixed segments, so Aut(X) ∼= G1 ≀ Z2 × G2 × G3, where G2 and
G3 are isomorphic to Aut(Ti), for each of two orbits of size one.

Case 3: Aut(N) ∼= Z2
2. Then Aut(N) has no orbits of size 1, at most one of

size 2, and all other of size 4. Let G1 be the direct product of all Aut(Ti), one
for each orbit of size 4, and let G2 be Aut(Ti) for the orbit of size 2. We have
Aut(X) ∼= (G4

1, G
2
2) ≀≀ Z2

2.

2.5.6 Comparability graphs of dimension k

In this section, we prove that Aut(4-DIM) contains all abstract finite groups, i.e.,
each finite group can be realised as an automorphism group of some 4-dimensional
comparability graph. Our construction also shows that graph isomorphism testing
of 4-DIM is GI-complete. Both results easily translate to k-DIM for k > 4 since
4-DIM ⊊ k-DIM.

The construction. Let X be a graph with V (X) = {x1, . . . , xn} and E(X) =
{e1, . . . , em}. We define

P =
{︂
pi : xi ∈ V (X)

}︂
, Q = {qik : xi ∈ ek}, R =

{︂
rk : ek ∈ E(X)

}︂
,

where P represents the vertices, R represents the edges and Q represents the
incidences between the vertices and the edges.

The constructed comparability graph CX is defined as follows, see Figure 2.23:

V (CX) = P ∪Q ∪R, E(CX) = {piqik, qikrk : xi ∈ ek}.

So CX is created from X by replacing each edge with a path of length four.

Lemma 2.25. For a connected graph X ̸∼= Cn, Aut(CX) ∼= Aut(X).

x2 x4

x1

x3

x5

e1e2

e3 e4

e5e6

X CX

p1 p2 p3 p4 p5

q11 q41 q12 q22 q23 q33 q34 q44 q45 q55 q26 q56

r1 r2 r3 r4 r5 r6

Figure 2.23: The construction CX for the graph X = K2,3.

42

Lemma 2.26. If X is a connected bipartite graph, then dim(CX) ≤ 4.

Proof. We construct four chains such that L1 ∩ L2 ∩ L3 ∩ L4 have two vertices
comparable if and only if they are adjacent in CX . We describe linear chains as
words containing each vertex of V (CX) exactly once. If S1, . . . , Ss is a sequence
of words, the symbol ⟨St : ↑ t⟩ is the concatenation S1S2 . . . Ss and ⟨St : ↓ t⟩ is the
concatenation SsSs−1 . . . S1. When an arrow is omitted, as in ⟨St⟩, we concatenate
in an arbitrary order.

First, we define the incidence string Ii which codes pi and its neighbors qik:

Ii = pi

⟨︂
qik : piqik ∈ E(CX)

⟩︂
.

Notice that the concatenation IiIj contains the right edges but it further con-
tains edges going from pi and qik to pj and qjℓ. We remove these edges by the
concatenation IjIi in some other chain.

Since X is bipartite, let (A,B) be the partition of its vertices. We define

PA = {pi : xi ∈ A}, QA = {qik : xi ∈ A},
PB = {pj : xj ∈ B}, QB = {qjk : xj ∈ B}.

Each vertex rk has exactly one neighbor in QA and exactly one in QB.
We construct the four chains as follows:

L1 = ⟨pi : pi ∈ PA⟩⟨rkqik : qik ∈ QA, ↑ k⟩⟨Ij : pj ∈ PB, ↑ j⟩,
L2 = ⟨pi : pi ∈ PA⟩⟨rkqik : qik ∈ QA, ↓ k⟩⟨Ij : pj ∈ PB, ↓ j⟩,
L3 = ⟨pj : pj ∈ PB⟩⟨rkqjk : qjk ∈ QB, ↑ k⟩⟨Ii : pi ∈ PA, ↑ i⟩,
L4 = ⟨pj : pj ∈ PB⟩⟨rkqjk : qjk ∈ QB, ↓ k⟩⟨Ii : pi ∈ PA, ↓ i⟩.

The four defined chains have the following properties, see Figure 2.24:

• The intersection L1 ∩ L2 forces the correct edges between QA and R and
between PB andQB. It poses no restrictions betweenQB andR and between
PA and the rest of the graph.

• Similarly the intersection L3 ∩ L4 forces the correct edges between QB and
R and between PA and QA. It poses no restrictions between QA and R and
between PB and the rest of the graph.

It is routine to verify that the intersection L1 ∩ L2 ∩ L3 ∩ L4 is correct.
Claim 1: The edges in Q ∪ R are correct. For every k, we get rk adjacent to
both qik and qjk since it appear on the left in L1, . . . , L4. On the other hand,
qikqjk /∈ E(CX) since they are ordered differently in L1 and L3.

PA PB

QA QB

R
L1 ∩ L2

PA PB

QA QB

R
L3 ∩ L4

Figure 2.24: The forced edges in L1 ∩ L2 and L3 ∩ L4.

43

For every k < ℓ, there are no edges between N [rk] = {rk, qik, qjk} and
N [rℓ] = {rℓ, qsℓ, qtℓ}. This can be shown by checking the four orderings of these
six elements:

in L1: rkqik rℓqsℓ qjk qtℓ , in L2: rℓqsℓ rkqikqjk qtℓ ,

in L3: rkqjk rℓqtℓ qik qsℓ , in L4: rℓqtℓ rkqjkqik qsℓ ,

where the elements of N [rℓ] are boxed. ⋄

Claim 2: The edges in P are correct. We show that there are no edges between
pi and pj for i ̸= j as follows. If both belong to PA (respectively, PB), then they
are ordered differently in L3 and L4 (respectively, L1 and L2). If one belongs to
PA and the other one to PB, then they are ordered differently in L1 and L3. ⋄

Claim 3: The edges between P and Q ∪ R are correct. For every pi ∈ P and
rk ∈ R, we have pirk /∈ E(CX) because they are ordered differently in L1 and L3.
On the other hand, piqik ∈ E(CX), because pi is before qik in Ii, and for pi ∈ PA

in L1 and L2, and for pi ∈ PB in L3 and L4.
It remains to show that piqjk /∈ E(CX) for i ̸= j. If both pi and pj belong

to PA (respectively, PB), then pi and qjk are ordered differently in L3 and L4
(respectively, L1 and L2). And if one belongs to PA and the other one to PB,
then pi and qjk are ordered differently in L1 and L3. ⋄

These three established claims show that comparable pairs in the intersection
L1 ∩ L2 ∩ L3 ∩ L4 are exactly the edges of CX , so CX ∈ 4-DIM.

Universality of k-DIM. We are ready to prove Theorem 2.5.

Proof of Theorem 2.5. We prove the statement for 4-DIM. Let X be a connected
graph such that X ̸∼= Cn. First, we construct the bipartite incidence graph Y
between V (X) and E(X). Next, we construct CY from Y . From Lemma 2.25
it follows that Aut(CY) ∼= Aut(Y) ∼= Aut(X) and by Lemma 2.26, we have that
CY ∈ 4-DIM. Similarly, if two graphs X1 and X2 are given, we construct CY1 and
CY2 such that X1 ∼= X2 if and only if CY1

∼= CY2 ; this polynomial-time reduction
shows GI-completeness of graph isomorphism testing.

The constructed graph CY is a prime graph. We fix the transitive orientation
in which P and R are the minimal elements and get the poset PY with Aut(PY) ∼=
Aut(CY). Hence, our results translate to posets of the dimension at most four.

2.6 Algorithms
In this section, we briefly explain algorithmic implications of our results. We
first describe the classical algorithm for graph isomorphism of rooted trees. We
process both trees from the leaves to the root and compute partial isomorphisms
between processed subtrees, using dynamic programming. Every leaf of X can be
mapped to every leaf of Y . Consider a subtree T of X with subtrees T1, . . . , Tk

attached to the root, and another subtree T ′ of Y with subtrees T ′
1, . . . , T

′
k at-

tached to the root. We want to decide whether T ∼= T ′, i.e, whether it is possible
to isomorphically pair T1, . . . , Tk with T ′

1, . . . , T
′
k. For an efficient linear-time im-

plementation, we assign colors to processes subtrees, coding isomorphism classes.

44

We just compare sizes of color classes of T1, . . . , Tk with the sizes of color classes
of T ′

1, . . . , T
′
k.

Colbourn and Booth [39] describe how this algorithm can be modified to
compute permutation generators of automorphism groups of trees in linear time,
in terms of permutation generators. It follows from our work that automorphism
groups of interval graphs, circle graphs and permutation graphs are captured by
MPQ-trees, split trees and modular trees, respectively. Therefore, we can use
these data structures to compute automorphism groups efficiently.

Our structural results allow to represent these automorphism groups by rooted
trees called group product trees. Their leaves correspond to trivial groups {1},
acting on pairwise disjoint subsets of vertices. Their inner nodes correspond one
of the following operations applied on the attached subtrees: the direct product,
the wreath product with Zn or Dn, the semidirect product with Dn or Z2

2. Group
product trees describe Aut(X) much better than lists of permutations generators
which can be easily computed from them. Many tools of the computational group
theory are devoted to getting better understanding of an unknown group, and
group product trees give this structural understanding for free.

Interval graphs. Using MPQ-trees, Colbourn and Booth [39] give a linear-
time algorithm to compute permutation generators of automorphism groups of
interval graphs. Using our structural results described in Section 2.3, we can
modify this algorithm to compute group product trees of automorphism groups
of interval graphs in linear time, and we sketch this below (missing details can be
found in [39]). For an input interval graph X, its MPQ-tree M can be computed
in linear time [112]. The algorithm processes M from the bottom to the root.
For a processed node, we construct Aut(X) from the automorphism groups of its
children Aut(X1), . . . ,Aut(Xk), as described in the proof of Theorem 2.1(i).

Corollary 2.27. For an interval graph X, we can compute a group product tree
of Aut(X) in time Ø(n+m), where n = |V (X)| and m = |E(X)|.

Circle graphs. Hsu [96] describes an algorithm solving the graph isomorphism
problem of circle graphs based on the minimal split decomposition in time O(n3).
The running time was recently improved to almost linear-time [98]. It is straight-
forward to modify the latter algorithm to compute generators of the automor-
phism groups in the same running time.

Permutation graphs. Colbourn [38] described an Ø(n3) algorithm for graph
isomorphism of permutation graphs. This was improved by Spinrad [146] to Ø(n2)
by computing modular decompositions and testing tree isomorphism on them.
The bottleneck of this algorithm is computing the modular decomposition, so by
combining with [126], the running time is improved to Ø(n+m). We are not aware
of any previous polynomial-time algorithm for computing automorphism groups
of permutation graphs, aside applying the above algorithms together with [124].

Corollary 2.28. For a permutation graph X, we can compute a group product
tree of Aut(X) in time Ø(n+m), where n = |V (X)| and m = |E(X)|.

45

Proof. We find the modular tree T of X. For each prime permutation node N ,
we finding at most four pairs of transitive orientations to(N,N). For every pair
(→,→), we construct the linear ordering →∩→ of endpoints of segments on a
line in a representation. This gives four linear orderings L1, L2, L3, and L4 which
correspond to different labelings of vertices. All above can be computed in linear
time using [126]. For each pair Li and Lj, we check whether πi,j mapping the
k-th vertex of Li to the k-th vertex of Lj is an automorphism. Since Aut(N)
acts semiregularly on to(N,N), by Lemma 2.23, these automorphism generate
Aut(N).

We apply the following bottom-up procedure which computes colors of marker
vertices, coding isomorphism classes of their attached subtrees. Suppose that we
process nodes on one level in the modular tree and let N1, . . . , Nk be all their
children, already processed before with their marker vertices colored by colors
1, . . . , c.

Case 1: Degenerate nodes. For each degenerate node with ℓ vertices, we
consider a vector v = (t, c1, c2, . . . , cℓ), where t is the type of the node (com-
plete/independent) and c1, . . . , cℓ are the sorted colors of its vertices. We sort
these vectors v of all degenerate nodes lexicographically and we assign new col-
ors 1, . . . , c′ to the computed isomorphism classes.

Case 2: Prime nodes. For each prime node with ℓ edges, we have four possible
labelings of vertices L1, . . . , L4. Each of them defines a vector v =

{︂
(xi, yi, ci)

}︂ℓ

i=1
,

where xiyi is the i-th edge. We use the vector v of an ordering Lj which is
lexicographically minimal. We compute these vectors v for each prime node, sort
them lexicographically and assign colors c′ + 1, . . . , c′′ to the obtain isomorphism
classes. There exists a color preserving isomorphism between two prime graphs
if and only if their vectors v are the same.

Using Bucket sort, the above procedure can be implemented in linear time.
For each node N we compute the color-preserving automorphism group Aut(N).
We apply Lemma 2.21 and we output Aut(X) by a group product tree. The
size of this tree is linear in the size of X since every vertex and module of the
modular decomposition is represented by constantly many vertices of the tree.
This algorithm can be implemented in linear time.

2.7 Open problems
We conclude this chapter with several open problems concerning automorphism
groups of other intersection-defined classes of graphs; for an overview see [78, 148].

Circular-arc graphs (CIRCULAR-ARC) are intersection graphs of circular arcs
and they naturally generalize interval graphs. Surprisingly, this class is very
complex and quite different from interval graphs. Hsu [96] relates them to circle
graphs.

Problem 1. What is Aut(CIRCULAR-ARC)?

The last conjecture involves the open case of 3-DIM.

Conjecture 2.29. The class 3-DIM is universal and its graph isomorphism prob-
lem is GI-complete.

46

3. Isomorphism of circle graphs
in almost linear time

3.1 Introduction
Recall that, for a graph X, a circle representation R of a graph X is a collection
of sets {⟨v⟩ : v ∈ V (X)} such that each ⟨v⟩ is a chord of some fixed circle,
and ⟨u⟩ ∩ ⟨v⟩ ≠ ∅ if and only if uv ∈ E(X). Observe that R is determined by
the circular word giving the clockwise order of endpoints of the chords in which
uv ∈ E(X) if and only if their endpoints alternate as uvuv in this word. A graph
is called a circle graph if and only if it has a circle representation; see Fig. 3.1.

Circle graphs were introduced by Even and Itai [62] in the early 1970s. They
are related to Gauss words [53], matroid representations [24, 52], and rank-
width [136]. The complexity of recognition of circle graphs was a long-standing
open problem, resolved in mid-1980s [23, 70, 130]. Currently, the fastest recogni-
tion algorithm [76] runs in almost linear time. We use this recognition algorithm
as a subroutine and solve the graph isomorphism problem of circle graphs in the
same running time.

Theorem 3.1. The graph isomorphism problem of circle graphs and the canon-
ization problem of circle graphs can be solved in time O((n + m) · α(n + m)),
where n is the number of vertices, m is the number of edges, and α is the inverse
Ackermann function. Further, if circle representations are given as a part of the
input, the running time improves to O(n+m).

Two circle representation are isomorphic if by relabeling the endpoints we get
identical circular orderings. In Section 3.4, we show that isomorphism of circle
representations can be tested in time O(n). When circle graphs X and Y have
isomorphic circle representations RX and RY , clearly X ∼= Y . But in general,
the converse does not hold since a circle graph may have many non-isomorphic
circle representations.

The main tool is the split decomposition which is a recursive process decom-
posing a graph into several indecomposable graphs called prime graphs. Each
split decomposition can be described by a split tree whose nodes are the prime
graphs on which the decomposition terminates. The key property is that the
initial graph is a circle graph if and only if all prime graphs are circle graphs.
Further, each prime circle graph has a unique representation up to reversal, so

1

23

4 5

6

7

8

9

10

12

1
2

3
4

34

5
6

5
6

7 8

7
8

9
10

9 10

Figure 3.1: A circle graph and one of its circle representations corresponding to
the circular word 10, 2, 1, 7, 8, 10, 9, 5, 6, 8, 7, 3, 4, 6, 5, 1, 2, 4, 3, 9.

47

isomorphism for them can be tested in O(n), using the approach described in
Section 3.4.

One might want to reduce the isomorphism problem of circle graphs to the
isomorphism problem of split trees. Unfortunately, a graph may posses many
different split decompositions corresponding to non-isomorphic split trees. The
seminal paper of Cunnigham [48, Theorem 3] shows that for every connected
graph, there exists a minimal split decomposition; this result was also proven
in [49, Theorem 11]. The split tree associated to the minimal split decomposition
is then also unique and it follows that the isomorphism problem of circle graphs
reduces to the isomorphism problem of minimal split trees.

This approach was used by Hsu [96] to solve the graph isomorphism prob-
lem of circle graphs in time O(nm). He actually concentrates on circular-arc
graphs, which are intersection graphs of circular arcs, and builds a decomposition
technique which generalizes minimal split decomposition. The main results are
recognition and graph isomorphism algorithms for circular-arc graphs running in
O(nm). Unfortunately, a mistake in this general decomposition technique was
pointed out by [50]. This mistake does not affect the graph isomorphism algo-
rithm for circle graphs. Moreover, as pointed out in [50, page 180], the complexity
of Hsu’s algorithm improves to O((n + m) · α(n + m)) if the fastest recognition
algorithm of circle graphs [76] is employed. In [50, page 180], it is stated: “If
chord models are given as an input, then the running time of the isomorphism
test can be reduced to O(n + m) using techniques similar to those used in [115]
and in our paper”. In this chapter, we fill in those details.

Our method, outlined above, is standart and similar to all isomorphism al-
gorithms for graph classes admiting tree-like decompositions. These include, for
example, planar graphs (SPQR-trees), interval graphs (PQ-trees) and others.
Then roughly speaking, the whole algorithm consists of testing isomorphism of
the indecomposable parts and applying an algorithm similar to the one for trees.
However, each graph class is its own nuances which need to be addressed. For in-
stance, in [50], the authors solve the isomorphism problem for several subclasses of
circular-arc graphs by reducing the problem to testing isomorphism of PC-trees.

A well-known subclass of circle graphs are proper circular-arc graphs, which
are intersection graphs of circular arcs such that no arc is properly contained in
another one. The methods used in the linear-time algorithm testing isomorphism
of proper circular-arc graphs, given in [115], are similar to the case of prime
circle graphs (see Section 3.4). In particular, co-bipartite circular-arc graphs
have unique representations and, in this case, the problem can be reduced to
finding minimal circular string.

Outline of the chapter. Section 3.2 gives an overview of minimal split decom-
position and minimal split trees. In Section 3.3, we describe a meta-algorithm
computing cannonical form of a general tree whose nodes are labeled by graphs
for which a linear-time cannonization is known. For a circle graph, its unique min-
imal split tree is labeled by prime circle graphs and degenerate graphs (complete
graphs and stars). In Section 3.4, we give linear-time cannonization algorithms
for prime and degenerate circle graphs. By putting this together in Section 3.5,
we prove Theorem 3.1. In Finally, we discuss related results and open problems.

48

A′ A B
B′ A′ A

mA

XA

B
B′

mB

XB

Figure 3.2: On the left, a split in X between A and B. On the right, application
of this split produces graphs XA and XB with newly created marker vertices
denoted by big white circles.

3.2 Minimal split decomposition and split trees
In this section, we describe several known properties of split decompositions and
split trees. We assume that all graphs are connected, otherwise split decomposi-
tion is applied independently on each component.

Splits. For a graph X, a split is a partition (A,B,A′, B′) of V (X) such that:

• For every a ∈ A and b ∈ B, we have ab ∈ E(X).

• There are no edges between A′ and B ∪B′, and between B′ and A ∪ A′.

• Both sides have at least two vertices: |A ∪ A′| ≥ 2 and |B ∪B′| ≥ 2.

See Fig. 3.2 on the left. In other words, the cut between A and B is the complete
bipartite graph. A split in a graph can be found in polynomial time [147]. Graphs
containing no splits are called prime graphs. Since the sets A and B already
uniquely determine the split, we call it the split between A and B.

We can apply a split between A and B to divide the graph X into two graphs
XA and XB defined as follows. The graph XA is created from X[A∪A′] together
with a new marker vertex mA adjacent exactly to the vertices in A. The graph
XB is defined analogously for B, B′ and mB. See Fig. 3.2 on the right.

Split decomposition and split trees. A split decomposition D of X is a
sequence of splits defined as follows. At the beginning, we start with the graph
X. In the k-th step, we have graphs X1, . . . , Xk and we apply a split on some
Xi, dividing it into two graphs X ′

i and X ′′
i . The next step then applies to one of

the graphs X1, . . . , Xi−1, X
′
i, X

′′
i , Xi+1, . . . , Xk, and so on.

A split decomposition can be captured by a graph-labeled tree T . The vertices
of T are called nodes to distinguish them from the vertices of X and from the
added marker vertices, and nodes correspond to subsets of these vertices. To
simplify the definition of graph isomorphism of graph-labeled trees, we give a
slightly different formal definition in which T is not necessarily a tree.

Definition 3.2. A graph-labeled tree T is a graph (V,E) with E = EN ∪̇ ET

where EN are called the normal edges and ET are called the tree edges. A node
is a connected component of (V,EN). There are no tree edges between the vertices
of one node and no vertex is incident to two tree edges. The incidence graph of
nodes must form a tree. The size of T is |V |+ |E|.

49

A graph-labeled tree T might not be a tree, but the underlying structure of tree
edges forms a tree of nodes. The vertices of T incident to tree edges are called
marker vertices.

A split decomposition D of X is represented by the following graph-labeled
tree T called the split tree T of D (or a split tree T of X). Initially, T consists
of a single node equal to X. At each step, D applies a split on one node N of T .
This node is replaced by two new nodes NA and NB while the tree edges incident
to N are preserved in NA and NB and the marker vertices mA and mB are further
adjacent by a newly formed tree edge. Figure 3.3 shows an example. It can be
observed that the total size of every split tree is O(n+m) where n is the number
of vertices and m is the number of edges of the original graph.

From a split tree T , the original graph X can be reconstructed by joining
neighboring nodes. For a tree edge mAmB, we remove mA and mB while adding
all edges uv for u ∈ N(mA) and v ∈ N(mB).

Recognition of circle graphs. A split decomposition can be applied to rec-
ognize circle graphs. The key is the following observation.

Lemma 3.3. A graph is a circle graph if and only if both XA and XB are circle
graphs.

The proof is illustrated in Figure 3.4, which can be easily formalized; see for
example [148]. A prime circle graph has a unique circle representation up to
reversal [51] which can be constructed in polynomial time [76].

Minimal split decomposition. A graph is called degenerate if it is the com-
plete graph Kn or the star Sn. Suppose that we have a split decomposition D
ending on prime graphs. Its split tree is not uniquely determined, for instance
degenerate graphs have many different split trees. Cunnignham [48] resolved this
issue by terminating the split decomposition not only on prime graphs, but also
on the degenerate graphs.

Cunnignham [48] introduced the notion of a minimal split decomposition. A
split decomposition is minimal if the corresponding split tree has all nodes as
prime and degenerate graphs, and joining any two neighboring nodes creates a
non-degenerate graph.

Theorem 3.4 (Cunningham [48], Theorem 3). For a connected graph X, the
split tree of a minimal split decomposition terminating on prime and degenerate
graphs is uniquely determined.

The split tree of a minimal split decomposition of X is called the minimal split
tree of X and it is denoted TX .

It was stated in [77, Theorem 2.17] that a split decomposition is minimal if
the corresponding split tree has no two neighboring nodes such that

• either both are complete,

• or both are stars and the tree edge joining these stars is incident to exactly
one of their central vertices.

50

G = T0 T1 T2

T3 T4

T5 T6

T = T7 TX

the minimal

split tree of X

Figure 3.3: An example of a split tree T of a split decomposition D terminating
with highlighted prime and degenerate graphs (see the definition below). The
split decomposition D is not minimal: the gray and purple stars can be joined in
T to form the minimal split tree TX in the box.

51

mA

A

A

RA

mB

B B

RB

A

B

A

B

R

Figure 3.4: On the left, circle representations RA and RB of graphs XA and XB.
They are combined into a circle representation R of X.

The reason is that such neighboring nodes can be joined into a complete node or
a star node, respectively. Therefore, the minimal split tree can be constructed
from an arbitrary split tree by joining neighboring complete graphs and stars.
For instance, the split tree T in Fig. 3.3 is not minimal since the purple and gray
stars can be joined, creating the minimal split tree TX .

Cunnignham’s definition of a minimal split decomposition is with respect to
inclusion. Since the minimal split decomposition is uniquely determined, it is
equivalently the split decomposition terminating on prime and degenerate graphs
using the least number of splits.

Computation of minimal split trees. The minimal split tree can be com-
puted in time O(n + m) using the algorithm of [51]. For the purpose of this
chapter, we use the following slower algorithm since it also computes the unique
circle representations of encountered prime circle graphs:

Theorem 3.5 (Gioan et al. [77, 76]). The minimal split tree TX of a circle graph
X can be computed in time O((n+m)·α(n+m)) where n is the number of vertices,
m is the number of edges, and α is the inverse Ackermann function. Further, the
algorithm also computes the unique circle representation of each prime circle node
of TX .

Graph isomorphism via minimal split decompositions. Let T and T ′ be
two graph-labeled trees. An isomorphism π : T → T ′ is an isomorphism which
maps normal edges to normal edges and tree edges to tree edges. Notice that π
maps nodes of T to isomorphic nodes of T ′ while preserving tree edges.

We use minimal split trees to test graph isomorphism of circle graphs:

Lemma 3.6. Two connected graphs X and Y are isomorphic if and only if the
minimal split trees TX and TY are isomorphic.

Proof. Let T ′
X and T ′

Y be any split trees of X and Y , respectively, and π : T ′
X →

T ′
Y be an isomorphism. We want to show that X ∼= Y . Choose an arbitrary tree

edge e = mAmB in T ′
X , we know that π(e) = π(mA)π(mB) is a tree edge in T ′

Y .
We join T ′

X over e and T ′
Y over π(e). We get that the restriction π|T ′

X\{mA,mB} is an
isomorphism of the constructed graph-labeled trees. By repeating this process, we
get single nodes isomorphic graph-labeled trees which are X and Y respectively.
So X ∼= Y .

For the other implication, suppose that π : X → Y is an isomorphism. Let
DX be a minimal split decomposition, constructing the minimal split tree TX .

52

We use π to construct a split decomposition DY and a split tree TY of Y such
that TX

∼= TY . Before any splits, the trees T 0
X
∼= X and T 0

Y
∼= Y are isomorphic.

Suppose that T k
X
∼= T k

Y and DX then uses a split between A and B in some
node N . Then DY will use the split between π(A) and π(B), and since π is an
isomorphism, it is a valid split in π(N). We construct T k+1

X by splitting N into
two nodes NA and NB and adding marker vertices mA and mB, and similarly
for T k+1

Y with marker vertices mπ(A) and mπ(B). We extend π to an isomorphism
from T k+1

X to T k+1
Y by setting π(mA) = mπ(A) and π(mB) = mπ(B). Therefore, the

resulting split trees TX and TY are isomorphic. By Theorem 3.4, the minimal split
tree of Y is uniquely determined, so it has to be isomorphic to the constructed
TY .

3.3 Canonization of graph-labeled trees
In the rest of the chapter, we work with colored graphs and isomorphisms are
required to be color-preserving. Colors are represented as non-negative integers.

Definition of canonization. Let X be a colored graph with n vertices with
colors in the range 0, . . . , n − 1 and m edges. An encoding ε(X) of X is a
sequence of non-negative integers. The encoding ε(X) is linear if it contains
at most O(n+m) integers, each in range 0, . . . , n− 1. We denote the class of all
encodings by E . For a class of graphs C, a linear canonization is some function
γ : C → E such that γ(X) is a linear encoding of X and for X, Y ∈ C, we have
X ∼= Y if and only if γ(X) = γ(Y).

Fast lexicographic sorting. Since we want to sort these encodings lexico-
graphically, we frequently use the following well-known algorithm:

Lemma 3.7 (Aho, Hopcroft, and Ullman [2], Algorithm 3.2, p. 80). It is possible
to lexicographically sort sequences of numbers 0, . . . , t− 1 of arbitrary lengths in
time O(ℓ+ t) where ℓ is the total length of these sequences.

It is easy to modify the above algorithm to get the same running time when all
numbers belong to {0, 1, 2, . . . , t+ 1, s, s+ 1, . . . , s+ t− 1}.

Canonization algorithm. In the rest of this section, we are going to describe
the following meta-algorithm.

Lemma 3.8. Let C be a class of graphs and T be a class of graph-labeled trees
whose nodes belong to C. Suppose that we can compute a linear-space canonization
γ of colored graphs in C in time f(n + m) where n is the number of vertices, m
is the number of edges, and f is convex. Then we can compute a linear-space
canonization ˜︁γ of graph-labeled trees from T in time O(n+m+ f(n+m)).

Let T ∈ T be a graph-labeled tree. Recall that every tree has either a central
vertex or a central edge. We may assume that T is rooted at the central node:
If a tree edge is central, we insert another node having a single vertex. Also, we
orient all tree edges towards the root. For a node N , we denote by T [N] the
graph-labeled subtree induced by N and all descendants of N . Initially, we color

53

all marker vertices by the color 0 and all other vertices by the color 1. Throughout
the algorithm, only marker vertices change colors.

The k-th layer in T is formed by all nodes of the distance k from the root.
Notice that every isomorphism from T to T ′ maps, for every k, the k-th layer
of T to the k-th layer of T ′. Also, every node N aside the root is incident to
exactly one out-going tree edge whose incident marker vertex outside N is called
the parent marker vertex of N .

The algorithm starts from the bottom layer of T and process the layers to-
wards the root. When a node N is processed, we assign a color c to N . This color
c corresponds to a certain linear encoding γ′(N) which is created by modifying
γ(N). Further, we store the mapping ε from colors to these linear encodings,
so ε(c) = γ′(N). The assigned colors have the property that two nodes N and
N ′ have the same assigned color if and only if the rooted graph-labeled subtrees
induced by N and all the nodes below and by N ′ and all the nodes below, respec-
tively, are isomorphic. We remove the node N from T and assign its color to the
parent marker vertex of N . Also notice that when a non-root node is processed,
all marker vertices except for one have colors different from 0, and for the root
node, all marker vertices have colors different from 0.

Let N1, . . . , Nk be the nodes of the currently processed layer such that each
vertex in these nodes has one color from {0, 1, . . . , t + 1, s, s + 1, . . . , s + t − 1}.
For each node Ni, we want to use the canonization subroutine to compute the
linear encoding γ(Ni). But the assumptions require that for ℓ vertices in Ni,
all colors are in range 0, . . . , ℓ − 1, but we might have s ≫ ℓ. We can avoid
this by renumbering the colors since at most ℓ different colors are used on Ni.
Suppose that exactly ci different colors are used in Ni, and we define the injective
mapping φNi

: {0, 1, . . . , ci − 1} → {0, 1, . . . , t + 1, s, s + 1, . . . , s + t − 1} such
that the smallest used color is φNi

(0), the second smallest is φNi
(1), and so on

till φNi
(ci − 1). The renumbering of colors on Ni is given by the inverse φ−1

Ni
.

After renumbering, the algorithm runs the canonization subroutine to com-
pute the linear encodings γ(N1), . . . , γ(Nk). We create the modified linear en-
coding γ′(Ni) by pre-pending γ(Ni) with the sequence ci, φNi

(0), φNi
(1), . . . ,

φNi
(ci − 1) where ci is the number of different colors used in Ni. The algo-

rithm lexicographically sorts these modified encodings γ′(N1), . . . , γ′(Nk) using
Lemma 3.7. Next, we assign the color s + t to the nodes having the smallest
encodings, the color s+ t+ 1 to the nodes having the second smallest encodings,
and so on. For every node Ni, we remove it and set the color of the parent marker
vertex of Ni to the color assigned to Ni.

Suppose that the root node N has the color c assigned, so throughout the
algorithm, we have used the colors 0, . . . , c. The computed linear encoding of T
is an encoded concatenation of ε(2), ε(3), . . . , ε(c).

Lemma 3.9. The described algorithm produces a correct linear canonization ˜︁γ
of graph-labeled trees in T , i.e., for T, T ′ ∈ T , we have T ∼= T ′ if and only if˜︁γ(T) = ˜︁γ(T ′).

Proof. Let π : T → T ′ be an isomorphism. We prove by induction from the
bottom layer to the root that γ′(N) = γ′(π(N)). Suppose that we are processing
the ℓ-th layer of T and T ′ and all previously used colors have the same assigned
encodings in T and T ′. For every node N of the ℓ-th layer of T , then π(N) belongs

54

to the ℓ-th layer of T ′. We argue that π also preserves the colors of N . Since π is
an isomorphism of graph-labeled trees, it maps marker vertices to marker vertices
and non-marker vertices to non-marker vertices. Let N1, . . . , Nk be the children
of N . By the induction hypothesis, we have γ′(Ni) = γ′(π(Ni)), so the same
colors are assigned to Ni and π(Ni). Therefore, π preserves the colors of N , and
this property still holds after renumbering the colors by φ−1

N = φ−1
π(N). Therefore,

we have γ(N) = γ(π(N)) and thus γ′(N) = γ′(π(N)). Thus, the lexicographic
sorting of the nodes in the ℓ-th layer of T and of T ′ is the same, so N and π(N)
have the same color assigned. Finally, the encodings ε(2), . . . , ε(c) are the same
in T and T ′, so ˜︁γ(T) = ˜︁γ(T ′).

For the other implication, we show that a graph-labeled tree T ′ isomorphic
to T can be reconstructed from ˜︁γ(T). We construct the root node N from ε(c).
Since γ is a canonization of C, we obtain N by applying γ−1. Next, we invert the
recoloring by applying φ(N) on the colors of N . Next, we consider each marker
vertex in N . If it has some color ci, we use ε(ci) to construct a child node N ′ of
N exactly as before. We proceed in this way till all nodes are expanded and only
the colors 0 and 1 remain. It is easy to prove by induction that T ∼= T ′ since each
ε(ci) uniquely determines the corresponding subtree in T .

Lemma 3.10. The described algorithm runs in time O(n+m+ f(n+m)).

Proof. When we run the canonization subroutine on a node having n′ vertices
and m′ edges, it has all colors in range 0, . . . , n′− 1, so we can compute its linear
encoding in time f(n′ + m′). Since f is convex and the canonization subroutine
runs on each node exactly once, the total time spend by this subroutine is bounded
by f(n+m).

The total count of used colors is clearly bounded by n and each layer uses
different colors except for 0 and 1. Consider a layer with nodes N1, . . . , Nk having
ℓ vertices and ℓ′ edges in total. All these nodes use at most ℓ different colors.
Therefore, the modified encodings γ′(N1), . . . , γ′(Nk) consisting of integers from
{0, 1, 2, . . . , ℓ+1, s, s+1, . . . , s+ℓ−1}, for some value s, and are of the total length
O(ℓ+ ℓ′). Therefore, lexicografic sorting of these modified encodings can be done
in time O(ℓ+ ℓ′), and this sorting takes total time O(n+m) for all layers of T .
Therefore, the total running time of the algorithm is O(n+m+ f(n+m)).

Proof of Lemma 3.8. It follows by Lemmas 3.9 and 3.10.

3.4 Canonization of prime and degenerate circle
graphs

Let C be the class of colored prime and degenerate circle graphs. Recall that all
nodes of minimal split trees of connected circle graphs belong to C. To apply the
meta-algorithm of Lemma 3.8, we need to show that the linear canonization γ of
C can be computed in time O(n+m) where n is the number of vertices and m is
the number of edges.

Linear canonizations of degenerate graphs. For a colored complete graph
X = Kn, we sort its colors using bucket sort in time O(n), so the vertices

55

have the colors c1 ≤ c2 ≤ · · · ≤ cn. The computed linear canonization γ(X)
is 0, c1, c2, . . . , cn.

For a star X = Sn, we sort the colors of leaves using bucket sort in time O(n),
so they have the colors c1 ≤ c2 ≤ · · · ≤ cn, while the center has the color c0. The
computed linear canonization γ(X) is 1, c0, c1, c2, . . . , cn.

Linear encodings of colored cycles. As a subroutine, we need to find a
canonical form of a colored cycle. To do this, it suffices to find the the lexico-
graphically minimal rotation of a circular string. This can be done using O(n)
comparisons over some alphabet Σ [21, 145].

Linear canonizations of circle representations. Let X be an arbitrary
colored circle graph on n vertices together with an arbitrary circle representation
R. The standard way to describeR is to arbitrarily order the vertices 1, . . . , n and
to give a circular word ω consisting of 2n integers from 1, . . . , n, each appearing
exactly twice, in such a way that the occurrences of i and j alternate (i.e., appear
as ijij) if and only if ij ∈ E(X). This circular word describes the ordering of the
endpoints of the chords in, say, the clockwise direction.

Let X and Y be two colored circle graphs on n vertices labeled 1, . . . , n with
circle representations RX and RY represented by ωX = ω1

X , . . . , ω
2n
X and ωY =

ω1
Y , . . . , ω

2n
Y . We say that RX

∼= RY if and only if there exists a bijection π :
{1, . . . , n} → {1, . . . , n} such that

• the vertices i in X and π(i) in Y have identical colors, and

• the circular words ωY and π(ω1
X), . . . , π(ω2n

X) are identical.

Notice that when RX
∼= RY , necessarily X ∼= Y , but in general the converse is

not true. We want to construct a linear canonization γ such that RX
∼= RY if

and only if γ(RX) = γ(RY).
To this end, we consider a different encoding of the representation which is

invariant on rotation. For each of 2n endpoints e1, . . . , e2n, we store two numbers:

• The color ci ∈ {0, . . . , n− 1} of the vertex of the chord corresponding to ei.

• The number of endpoints gi in the clockwise direction between ei and the
other endpoint corresponding to the same chord. We have gi ∈ {0, · · · , 2n−
2} and when the ei and ej correspond one chord, then gi + gj = 2n− 2.

To distinguish ci from gi, we increase all ci by 2n−1, so ci ∈ {2n−1, · · · , 3n−2}.
Then we may consider the circular word λX = g1, c1, g2, c2, . . . , g2n, c2n of length
4n.

Lemma 3.11. Let X and Y be two colored circle graphs with representations RX

and RY . We have RX
∼= RY if and only if the circular words λX and λY are

identical.

Proof. If RX
∼= RY , there exists an index k ∈ {0, . . . , 2n− 1} such that rotating

the representation RX by k endpoints produces RY . When

λX = g1, c1, . . . , g2n, c2n and λY = g′
1, c

′
1, . . . , g

′
2n, c

′
2n,

56

it cyclically holds that gi = g′
i+k and ci = c′

i+k. So the circular words λX and λY

are identical.
For the other implication, observe that the circle representation RX and the

circle graph X can be reconstructed from λX . If λX and λY are identical, we
reconstruct isomorphic representations RX and RY .

Lemma 3.12. We can compute the linear encoding γ of colored circle represen-
tations in time O(n).

Proof. For a representation RX , we can clearly compute λX in time O(n). Next,
we apply to λX a cycle canonization algorithm [21, 145] which computes γ(RX)
in time O(n).

Linear canonization of prime circle graphs. Let X be a prime circle graph.
It has at most two different representations RX and R′

X where one is the reversal
of the other. Using Lemma 3.12, we compute their linear encodings λX and λ′

X .
As the linear encoding γ(X), we chose the lexicographically smallest of λX and
λ′

X , prepended with the value 2. Clearly, colored prime circle graphs X and Y
are isomorphic if and only if γ(X) = γ(Y).

By putting the results of this section together, we get the following:

Lemma 3.13. We can compute linear canonization of colored prime circle graphs
and degenerate graphs in time O(n).

3.5 Canonization and graph isomorphism of cir-
cle graphs

In this section, we combine the presented results to show that a linear canoniza-
tion γ of circle graphs can be computed in time O((n + m) · α(n + m)). This
algorithm clearly implies Theorem 3.1 since circle graphs X and Y are isomorphic
if and only if γ(X) = γ(Y).

Suppose that X is a connected circle graph. We apply the algorithm of The-
orem 3.5 to compute the minimal split decomposition TX of X and the unique
circle representation for each prime circle graph (up to reversal). We halt if some
circle representations does not exist since X is not a circle graph. The total
running time of preprocessing is O((n + m) · α(n + m)), and the remainder of
the algorithm runs in time O(n + m), so this step is the bottleneck. Next, we
use Lemmas 3.13 and 3.8 to compute a linear canonization γ(TX) and we put
γ(X) = γ(TX).

Suppose that the circle graph X is disconnected, and let X1, . . . , Xk be its
connected components. We compute their linear encodings γ(X1), . . . , γ(Xk),
lexicografically sort them in time O(n + m) using Lemma 3.7, and output them
in γ(X) sorted as a sequence. The total running time is O((n+m) · α(n+m)).

When the input also gives a circle representation R, we can avoid using The-
orem 3.5. Instead, we compute a split decomposition and the corresponding split
tree in time O(n + m) using [51]. We can easily modify this split tree into the
minimal split tree by joining neighboring complete vertices and stars as discussed
in Section 3.2. For each prime node N , we obtain its unique circle representation

57

by restricting R to the vertices of N . Since the avoided algorithm of Theorem 3.5
was the bottleneck, we get the total running time O(n+m).

3.6 Open problems
We conclude this chapter by discussing several possible research directions and
open problems. The main used tool is minimal split decomposition. The algo-
rithm finds the cannonical form of the unique minimal split tree T , using the
canonical forms of every prime and degenerate circle graph appearing as a node
of T . We obtain an algorithm computing the cannonical form for every circle
graph.

Problem 2. Does the minimal split tree capture all possible representations of
circle graph?

The k-dimensional Weisfeiler-Leman [162] algorithm (k-dim WL) is a fun-
damental algorithm used as a subroutine in graph isomorphism testing. The
algorithm colors k-tuples of vertices of two input graphs and iteratively refines
the color classes until the coloring becomes stable. We say that k-dim WL dis-
tinguishes two graph X and Y if and only if its application to each of them gives
different colorings. Two distinguished graphs are clearly non-isomorphic, how-
ever, for every k, there exist non-isomorphic graphs not distinguished by k-dim
WL. For a class of graphs C, the Weisfeiler-Leman dimension of C is the minimum
integer k such that k-dim WL distinguishes every X, Y ∈ C such that X ̸∼= Y .

Problem 3. What is the Weisfeiler-Leman dimension of circle graphs?

For many classes of graphs such as interval graphs [59], planar graphs [102],
or more generally graphs with excluded minors [81], and recently also circular-arc
graphs [132], the Weisfeiler-Leman dimension is finite. A major open problem is
for which classes of graphs can isomorphism be tested in polynomial time without
using group theory, i.e., by a combinatorial algorithm, often meant some k-dim
WL.

Further, a natural question to ask, especially for problems solvable in linear
time, is whether they can be solved using logarithmic space. This is, for example,
known for interval graphs [110] and Helly circular-arc graphs [111]. Recently, a
parametrized logspace algorithm was given for testing isomorphism of circular-arc
graphs in [31].

Problem 4. Can isomorphism of circle graphs be tested using logarithmic space?

Finally, we mention the partial representation extension problem which is a
generalization of the recognition problem. The input consists of, in our case,
a circle graph and a circle representation of its induced subgraph and the task
is to complete the representation or output that it is not possible. Obviously,
this problem can be asked for various classes of graphs and it was extensively
studied [106, 104, 105, 33, 15, 113].

In [33], the authors give an O(n3) algorithm to solve this problem. They give
an elementary recursive description of the structure of all representations and
try to match the partial representation on it. It is a natural question whether

58

the minimal split trees can be used to solve the partial representation extension
problem faster.

Problem 5. Can the partial representation extension problem for circle graphs
be solved using minimal split decomposition faster that O(n3)?

59

60

4. Isomorphism problem for
chordal graphs

4.1 Introduction
In this chapter, we deal with parameterized complexity of the graph isomorphism
problem for the class of chordal graphs. An undirected graph is said to be chordal
if it has no chordless cycle of length at least four. Every chordal graph admits
a representation as the intersection graph of subtrees of some tree [74]. The
leafage ℓ(X) of a chordal graph X is the minimum integer ℓ ≥ 1 such that X has
a representation on a tree with ℓ leaves. The leafage was introduced in [114] and
provides a natural parametrization of the class of all chordal graphs.

One can see that, ℓ(X) = 1 if and only if X is complete, and ℓ(X) ≤ 2 if
and only if X is an interval graph, i.e., the intersection graph of finitely many
intervals on the real line. Thus the leafage measures how close is a chordal
graph to interval graph, which has some important algorithmic consequences.
For instance, efficient solutions to some NP-hard problems on interval graphs
naturally extend to chordal graphs of bounded leafage; e.g, [149].

The graph isomorphism problem restricted to the class of chordal graphs re-
mains as hard as the general graph isomorphism problem [118, Theorem 5]. On
the other hand, the problem can be solved in linear time for interval graphs [118].
The main result of this chapter can be considered as a substantial generalization
of the latter.

Theorem 4.1. Testing isomorphism of chordal graphs of bounded leafage is fixed-
parameter tractable.

Denote by Kℓ the class of graphs of all chordal graphs of leafage at most
ℓ. To test if two connected graphs X, Y ∈ Kℓ are isomorphic, it suffices to
find a generator of the automorphism group of the disjoint union X ∪ Y , which
swaps X and Y . Since the graph X ∪ Y belongs to the class K2ℓ, the graph
isomorphism problem for the graphs in Kℓ is reduced to the problem of finding the
automorphism group of a given graph in K2ℓ. Thus Theorem 4.1 is an immediate
consequence of the following theorem which is proved in this chapter.

Theorem 4.2. Given an n-vertex graph X ∈ Kℓ, a generating set of the group
Aut(X) can be found in time t(ℓ) poly(n), where t(·) is a function independent
of n.

The function t from Theorem 4.2 is bounded from above by a polynomial
in (ℓ2ℓ)!. This estimate does not appear to be final and, most likely, can be
significantly improved.

The proof of Theorem 4.2 is given in Section 4.7. The first main idea is to
represent the group Aut(X) as the automorphism group Aut(H) of an order-3
hypergraphH = H(X). In contrast to ordinary hypergraph with vertex set V and
hyperedge set contained in the power set E1 = 2V , the structure of H includes
order-2 and order-3 hyperedges which are elements of E2 = 2E1 and E3 = 2E2 ,

61

respectively. Of course, the size of H is still bounded by a polynomial in n.
The reduction of finding Aut(X) to finding Aut(H) is presented in Sections 4.4
and 4.5. The key point of the reduction is a graph-theoretical analysis of the
vertex coloring of the graph X, obtained by the Weisfeiler-Leman algorithm [162].
At the end of the reduction, we arrive to the colored order-3 hypergraph H such
that the size of each color class of vertices contains at most b = ℓ2ℓ vertices, where
ℓ = ℓ(X).

At this point, we come to a general problem of finding the automorphism
group of the order-k hypergraph H (k ≥ 1) by an FPT algorithm with respect
to the parameter b. This problem seems to be important in itself. For ordinary
hypergraphs, it was solved in [4]. A relevant generalization of the algorithm
proposed there is given in Section 4.6.

Further motivation for our work stems from the concept of H-graphs, orig-
inally introduced in [19]. A graph is an H-graph if it is an intersection graphs
of connected subgraphs of a subdivision of H. This generalizes many important
classes: interval graphs are K2-graphs, circular-arc graphs are K3-graphs, and
chordal graphs are the union of all T -graphs, where T is a tree. Every graph is
an H-graph for a suitable H, which gives a parametrization of all graphs.

Surprisingly, some basic algorithmic results, including the recognition and
isomorphism problem, were obtained for H-graphs only recently; see e.g., [34, 35,
67]. It was proved in [1] that isomorphism of Sd-graphs, where Sd is a star of
degree d, is in FPT. Since every Sd-graph is a chordal graph of leafage bounded
by d, our result improves that in [1]. On the other hand, the isomorphism problem
for H-graphs is as hard as the general graph isomorphism problem if H is not
unicyclic [36]. It remains open whether isomorphism can be solved in polynomial
time for the unicyclic case.

4.2 Notation
In this chapter, we use concenpts from permutation group theory, graph theory,
and the theory of coherent configurations. Thus, we introduce some notation
specific for this chapter.

General notation. Throughout the whole chapter, Ω is a finite set. Given a
bijection f from Ω to another set and a subset ∆ ⊆ Ω, we denote by f∆ the
bijection from ∆ to ∆f = {δf : δ ∈ ∆}. For a set S of bijections from ∆ to
another set, we put S∆ = {f∆ : f ∈ S}.

The group of all permutations of a set Ω is denoted by Sym(Ω). When a
group G acts on Ω, we set GΩ = {gΩ : g ∈ G} to be the permutation group
induced by this action. Concerning standard permutation group algorithms we
refer the reader to [144].

Let π be a partition of Ω. The set of all unions of the classes of π is denoted
by π∪. The partition π is a refinement of a partition π′ of Ω if each class of π′

belongs to π∪; in this case, we write π ≥ π′, and π > π′ if π ≥ π′ and π ̸= π′.
The partition of ∆ ⊆ Ω induced by π is denoted by π∆.

62

Graphs. Let X be an undirected graph. The vertex and edge sets of X are
denoted by Ω(X) and E(X), respectively. The automorphism group of X is
denoted by Aut(X). The set of all isomorphisms from X to a graph X ′ is denoted
by Iso(X,X ′).

The set of all leaves and of all connected components ofX are denoted by L(X)
and Conn(X), respectively. For a vertex α, we denote by αX the set of neighbors
of α in X. The vertices α and β are called twins in X if every vertex other than
α and β is adjacent either to both α and β or neither of them. The graph X is
said to be twinless if no two distinct vertices of X are twins.

Let ∆,Γ ⊆ Ω(X). We denote by X∆,Γ the graph with vertex set ∆ ∪ Γ in
which two vertices are adjacent if and only if one of them is in ∆, the other one
is in Γ, and they are adjacent in X. Thus, X∆ = X∆,∆ is the subgraph of X
induced by ∆, and X∆,Γ is bipartite if ∆ ∩ Γ = ∅.

Let ∆ ⊆ Ω(X) and Y = X∆. The set of all vertices adjacent to at least
one vertex of ∆ and not belonging to ∆ is denoted by ∂Y . The subgraph of X,
induced by ∆ ∪ ∂Y is denoted by Y .

For a tree T , let S(T) = {Ω(T ′) : T ′ is a subtree of T} be the set of all vertex
sets of the subtrees of T . A tree-representation of a graph X = (Ω, E) on T is a
function R : Ω→ S(T) such that for all u, v ∈ Ω,

R(u) ∩R(v) ̸= ∅⇔ {u, v} ∈ E.

It is known that a graph X is chordal if and only if X has a such a representa-
tion [74]. The leafage ℓ(X) of X is defined to be the minimum of |L(T)| taken over
all tree-representations of X on T and all trees T for which such a representation
exists. In particular, the graph X is interval if and only if ℓ(X) ≤ 2.

Colorings. A partition π of Ω is said to be a coloring (of Ω) if the classes of
π are indexed by elements of some set, called the colors. In this case, the classes
of π are called color classes and the color class containing α ∈ Ω is denoted
by π(α). Usually the colors are assumed to be linearly ordered. A bijection f
from Ω to another set equipped with coloring π′, is said to be color preserving if
π(α) = π′(f(α)).

A graph equipped with a coloring of the vertex set (respectively, edge set) is
said to be vertex colored (respectively, edge colored); a graph which is both vertex
and edge colored is said to be colored. The isomorphisms of vertex/edge colored
graphs are ordinary isomorphisms which are color preserving. To emphasize this
fact, we sometimes use notation Aut(X, π) for the automorphism group of a
graph X with coloring π.

Let π be a coloring of a graph X. Consider the application of the Weisfeiler-
Leman algorithm (2-dim WL) to the vertex-colored graph X [162]. The output
of this algorithm defines a new coloring WL(X, π) ≥ π of X. We say that π
is stable if WL(X, π) = π. Using the language of coherent configurations, π is
stable if and only if the classes of π are the fibers of a coherent configuration
(details can be found in the monograph [37]). In the sequel, we will use some
elementary facts from theory of coherent configurations. The following statement
summarizes relevant properties of stable colorings.

63

Lemma 4.3. Let X be a graph and π be a stable coloring of X. Then

1. given ∆,Γ ∈ π, the number |δX ∩ Γ| does not depend on δ ∈ ∆,

2. if ∆ ∈ π∪ or X∆ ∈ Conn(X), then the coloring π∆ is stable.

A coloring π of the vertices of a graph X is said to be invariant if every class
of π is Aut(X)-invariant. In this case, the coloring WL(X, π) is also invariant
and stable. Since the coloring of the vertices in one color is invariant and the
Weisfeiler-Leman algorithm is polynomial-time, we may always deal with invari-
ant stable colorings.

Hypergraphs. Let V be a finite set. The set Ek = Ek(V) of the order-k hyper-
edges on V is defined recursively as follows:

E0 = V, Ek = Ek−1 ∪ 2Ek−1 for k > 1.

Thus we consider elements of V as order-0 hyperedges, and order-k hyperedges
include all order-(k − 1) hyperedges and their subsets.

Let U ⊆ V and e ∈ Ek (k ≥ 1). We recursively define the projection of e on
U as the multiset

eU =
⎧⎨⎩e ∩ U if k = 1,
{{˜︁e U : ˜︁e ∈ e}} if k > 1.

We extend this definition to all sets E ∈ Ek by putting EU = {eU : e ∈ E}.

Definition 4.4 (order-k hypergraph). An order-k hypergraph (k ≥ 1) on V is
a pair H = (V,E), where E ⊆ 2E k ; the elements of V and E are called vertices
and hyperedges of H, respectively.

It is easily seen that order-1 hypergraphs are usual hypergraphs and the
higher-order hypergraphs (i.e., order-k hypergraph for some k) are combinato-
rial objects in the sense of [25]. The concepts of isomorphism and coloring
extend to higher-order hypergraphs in a natural way.

Let k ≥ 2. The (k − 1)-skeleton of an order-k hypergraph H = (V,E) is an
order-(k − 1) hypergraph H(k−1) on V with the hyperedge set

E(k−1) = {˜︁e ∈ Ek−1 : ˜︁e belongs to some e ∈ Ek}.

It is easily seen that for every order-k hypergraph H ′ = (V ′, E ′)

Iso(H,H ′) = {f ∈ Iso(H(k−1), H ′ (k−1)) : e ∈ E ⇔ ef ∈ E ′}. (4.1)

where for each order-k hyperedge e = {e1, . . . , ea} we set ef = {ef
1 , . . . , e

f
a}.

Let H1 = (V1, E1) be an order-k hypergraph for some k and H2 = (V2, E2) be
a usual hypergraph such that V2 = E1. Then each hyperedge e ∈ E2 is a subset
of hyperedges of E1. We define the hypergraph composition of H1 and H2 to be
the order-(k + 1) hypergraph

H := H1 ↑ H2 = (V,E1 ∪ E2).

64

Note that if H1 is a k1-order hypergraph and H2 is a k2-order hypergraph,
then H := H1 ↑ H2 is a (k1 + k2)-order hypergraph.

When the hypergraphs H1 and H2 are colored, the coloring of every hyperedge
set Ei ∩ E(H) is inherited from the coloring of E1 for i ≤ k; the color of every
hyperedge e ∈ Ek+1 ∩ E(H) is defined to be the pair consisting of the color of
e ∈ E2 and the multiset of the vertex colors of the elements of e (which are the
elements of V1).

4.3 Stable colorings in chordal graphs
We prove several auxiliary statements about the structure of subgraphs of a
chordal graph, induced by one or two color classes of a stable coloring.

Lemma 4.5. Let X be a chordal graph and π a stable coloring of X. Then for
every ∆,Γ ∈ π, the following statements hold:

1. Conn(X∆) consists of cliques of the same size,

2. if |Conn(X∆)| ≤ |Conn(XΓ)|, then Conn(X∆) = {Y∆ : Y ∈ Conn(X∆∪Γ)},

3. if the graphs X∆ and XΓ are complete, then X∆,Γ is either complete bipartite
or empty.

Proof. (1) By Lemma 4.3(1) for ∆ = Γ, the graph X∆ is regular. It suffices to
verify that every graph Y ∈ Conn(X∆) is complete. Since Y is chordal it contains
a simplicial vertex, i.e., a vertex whose neighborhood induces a complete graph.
As Y is regular, all its vertices are simplicial. Thus, Y is complete.

(2) Let X be a bipartite graph with parts ∆ = Conn(X∆) and Γ = Conn(XΓ)
in which two vertices α ∈ ∆ and β ∈ Γ are adjacent if and only if there are
vertices α ∈ α and β ∈ β adjacent in X. By statement (1), the components of
X∆∪Γ are in one-to-one correspondence with the components of X. Denote by Y
the component of X, corresponding to the component Y ∈ Conn(X∆∪Γ).

The partition π = {∆,Γ} is a stable coloring of X. Indeed, it suffices to find
a coherent configuration on Ω(X), for which ∆ and Γ are fibers. As this configu-
ration, one can take the quotient of the coherent configuration corresponding to
π, modulo the equivalence relation on ∆ ∪ Γ the classes of which are vertex sets
of the graphs belonging to ∆ and Γ, see [37, Section 3.1.2].

By Lemma 4.3(1), any two vertices of X, belonging to the same part, have
the same degree. Moreover, the graph X is obviously chordal. Consequently, it
is acyclic: otherwise, X being bipartite contains an induced cycle of length at
least 4, which is impossible for a chordal graph. It follows that X contains a
vertex α of degree 1. Since all vertices of the part containing α have the same
degree, each Y ∈ Conn(X) is a star. The center of this star lies in ∆, because
|∆| ≤ |Γ|. Thus, Y∆ ∈ Conn(X∆), which implies the required statement.

(3) Without loss of generality we may assume that ∆ ̸= Γ. Suppose to the
contrary that there are δ1, δ2 ∈ ∆ such that δ1X∩Γ ̸= δ2X∩Γ. By Lemma 4.3(1),
we have |δ1X ∩ Γ| = |δ2X ∩ Γ|. Thus there exist γ1 ∈ δ1X ∩ Γ and γ2 ∈ δ2X ∩ Γ
such that

γ1 ̸∈ δ2X and γ2 ̸∈ δ1X.

65

By the assumption, the graphs X∆ and XΓ are complete. It follows that δ1 and δ2
are adjacent, and that γ1 and γ2 are adjacent. Therefore, the vertices δ1, γ1, γ2, δ2
form an induced 4-cycle of X, a contradiction.

Remark 4.6. Recall that stable coloring was defined via 2-dimensional Weisfeiler-
Leman algorithm. While the 1-dimensional Weisfeiler-Leman algorithm suffices
for the first part of Lemma 4.5, it is worth noting that the second part requires
the 2-dimensional algorithm.

Lemma 4.7. Let X be a connected chordal graph and let π be a stable partition
of Ω. There exists ∆ ∈ π such that the graph X∆ is complete.

Proof. The statement immediately follows from Lemma 4.5(1) if |π| = 1. Assume
that |π| > 1. Since π is stable, the classes of π are the fibers of some coherent
configuration on Ω, see Section 4.2.

Suppose to the contrary that the graph X∆ is not complete for any ∆ ∈ π.
Let ∆ be a class of π, containing a simplicial vertex of X. Then all vertices in ∆
are simplicial, see [61, Lemma 8.1]. It follows that the graph X ′ := XΩ\∆ is con-
nected and chordal. Moreover, the partition π′ := πΩ\∆ is stable by Lemma 4.3(2).
Since |π′| < |π|, we conclude by induction that there is ∆′ ∈ π′ such that X ′

∆′ is
complete, which is not possible, because ∆′ ∈ π.

Estimates depending on the leafage. The following two lemmas are crucial
for estimating the complexity of the main algorithm.

Lemma 4.8. Let X be a chordal graph, ∆ a subset of its vertices, and

S = S(X,∆) = {Y ∈ Conn(X −∆) : Y is not interval}, (4.2)

Then |S| ≤ ℓ(X)− 2.

Proof. Let R be a tree-representation of X on a tree T such that |L(T)| = ℓ(X),
and let n3 be the number of all vertices of T of degree at least 3. It is not hard
to verify that

n3 ≤ ℓ− 2, (4.3)

where ℓ = ℓ(X).
Let Y ∈ S(X,∆), and let R(Y) be the union of all subtrees R(α), α ∈ Ω(Y).

Then R(Y) is a subtree of T . We claim that R(Y) contains a vertex tY of degree
at least 3. Indeed, otherwise, R(Y) is a path in T . Moreover, if α ∈ ∂Y , then
either R(α) is a subpath of P , or R(α) contains at least one end of P . This
implies that the restriction of R to the set Ω(Y) ∪ ∂Y is a tree-representation of
Y on P . But then Y is interval, a contradiction.

To complete the proof, we note that the sets R(Y), Y ∈ S, are pairwise
disjoint. Therefore the vertices tY are pairwise distinct. By inequality (4.3), this
yields

|S| = |{tY : Y ∈ S}| ≤ n3 ≤ ℓ− 2,

as required.

66

Let π be a vertex coloring of X. Given a pair (∆,Γ) ∈ π × π, we define an
equivalence relation e∆,Γ on ∆ by setting

(δ, δ′) ∈ e∆,Γ ⇔ δ and δ′ are twins in X∆,Γ. (4.4)

Note that the equivalence relation eΓ,∆ is defined on Γ, and coincides with e∆,Γ
only if Γ = ∆. The sets of classes of e∆,Γ and eΓ,∆ are denoted by ∆/e∆,Γ and
Γ/eΓ,∆, respectively.

Lemma 4.9. Let X be a chordal graph, π a stable coloring, and ∆,Γ ∈ π.
Assume that the graph X∆ is complete. Then

|∆/e∆,Γ| ≤ 2ℓ and |Γ/eΓ,∆| ≤ ℓ, (4.5)

where ℓ = ℓ(X).

Proof. Without loss of generality we may assume that X = X∆∪Γ (because
ℓ(X∆∪Γ) ≤ ℓ(X)), and the graph X∆,Γ is neither complete bipartite, nor empty
(otherwise, |∆/e∆,Γ| = 1 and |Γ/eΓ,∆| = 1, and both statements are trivial).
Thus, XΓ is not complete by Lemma 4.5(3) and ∆ is a maximal clique of X∆; in
particular, ∆ ̸= Γ.

Let R : Ω → S(T) be a tree-representation of the graph X on a tree T with
ℓ leaves. Without loss of generality, we may assume that the set Ω(T) is the
minimum possible. Since ∆ is a clique of X, the intersection of the subtrees
R(δ), δ ∈ ∆, contains at least one point t.

Let γ ∈ Γ. Then t /∈ R(γ) by the maximality of ∆. Denote by tγ the point of
R(γ), lying at the minimum distance from t in T . Let Pγ be the path connecting t
and tγ; note that Pγ has at least two vertices, because t ̸= tγ.

Let us define a partial order on T = {tγ : γ ∈ Γ} by setting tγ ⪯ tγ′ if and only
if tγ lies in Pγ′ (in particular, tγ is closer to t than tγ′), or equivalently, Pγ ⊆ Pγ′ .
Claim. If tγ ⪯ tγ′ , then (γ, γ′) ∈ eΓ,∆.

Proof. Let δ ∈ γ′X ∩∆. Then the intersection R(δ)∩R(γ′) is not empty. More-
over, it contains tγ′ : for otherwise, because t ∈ R(δ), the set R(γ′) contains a
vertex which is closer to t than tγ′ . Consequently, Pγ′ ⊆ R(δ). Since Pγ ⊆ Pγ′ ,
this implies that

tγ ∈ Pγ ⊆ R(γ′) ⊆ R(δ),
i.e., the intersection R(δ)∩R(γ) ∋ tγ is not empty; in particular, δ ∈ γX ∩∆. It
follows that γ′X∩∆ ⊆ γX∩∆. Since also |γ′X∩∆| = |γX∩∆| by Lemma 4.3(1),
we are done.

Let Tmin ⊆ T be the set of all minimal points with respect to the partial
order on T . By the claim, for every γ′ ∈ T \ Tmin there is γ ∈ Tmin such that
(γ, γ′) ∈ eΓ,∆. Thus,

|Γ/eΓ,∆| ≤ |Tmin|.
On the other hand, by the minimality of T , every leaf of T belongs to R(γ) for
some γ ∈ Γ. Consequently, the path from any leaf of T to t contains at most one
point of Tmin. Thus, |Tmin| ≤ ℓ and so

|Γ/eΓ,∆| ≤ |Tmin| ≤ ℓ,

67

which proves the second inequality in (4.5).
To complete the proof, we observe that if δ ∈ ∆, then the set δX ∩ Γ is a

union of some classes of Γ/eΓ,∆. Denote this union by Γδ. Note that if δ, δ′ ∈ ∆,
then Γδ = Γδ′ if and only if (δ, δ′) ∈ e∆,Γ. Therefore, the number |∆/e∆,Γ| is at
most

|∆/e∆,Γ| ≤ |2Γ/eΓ,∆ | = 2|Γ/eΓ,∆| ≤ 2ℓ,

which proves the first inequality in (4.5).

4.4 Critical set of a chordal graph
Let X be a chordal graph and π a stable coloring. Denote by Ω∗ = Ω∗(X, π) the
union of all ∆ ∈ π such that

|Conn(X∆)| ≤ ℓ(X). (4.6)

By Lemma 4.5(1), the graph X∆ is a disjoint union of cliques; thus the above
condition means that the number of them is at most ℓ(X). By Lemma 4.7, the
set Ω∗ is not empty if the graph X is connected.

Theorem 4.10. Let X be a chordal graph and Ω∗ = Ω∗(X, π). Then one of the
following statements holds:

i for every Y ∈ Conn(X − Ω∗), the graph Y is interval,

ii there is a invariant stable coloring π′ > π.

Moreover, in case (ii), the coloring π′ can be found in polynomial time in |Ω|.

Proof. Assume that (i) does not hold. Then the set the set S = S(X,∆∗) defined
by formula (4.2) for ∆ = Ω∗ is not empty. By Lemma 4.8, we have

|S| ≤ ℓ− 2, (4.7)

where ℓ = ℓ(X). Take an arbitrary Y ∈ S. By Lemma 4.3(2), the coloring
πY := πΩ(Y) is stable. By Lemma 4.7, there is Γ′ ∈ πY such that the graph YΓ′ is
complete. Let Γ be the class of π, containing Γ′. Then

Γ ∩ Ω∗ = ∅, (4.8)

because Γ intersects Ω \Ω∗ ∈ π∪. Moreover, every automorphism of X preserves
the sets S and Γ and hence preserves the set

S ′ = {Z ∈ S : ZΓ∩Ω(Z) is complete}.

Thus the union Γ0 of all sets Γ ∩ Ω(Z), Z ∈ S ′, is a nonempty Aut(X)-invariant
set contained in Γ. Now if Γ0 ̸= Γ, then we come to case (ii) with

π′ = (π \ {Γ}) ∪ {Γ \ Γ0,Γ ∩ Γ0}.

To complete the proof, assume that Γ0 = Γ. Then by inequality (4.7), the graph
XΓ is the union of at most |S ′| ≤ |S| ≤ ℓ − 2 cliques. By the definition of Ω∗,
this yields Γ ⊆ Ω∗, which contradicts relation (4.8).

68

We say that Ω∗ is a critical set of X (with respect to π) if statement (i)
of Theorem 4.10 holds. In the rest of the section we define a hypergraph H∗

associated with the critical set Ω∗ and show that the groups Aut(H∗)Ω∗ and
Aut(X)Ω∗ are closely related.

The vertices of H∗ are set to be the elements of the disjoint union

V =
⋃︂

∆∈πΩ∗

⋃︂
Γ∈π

∆/e∆,Γ,

where e∆,Γ is the equivalence relation on ∆, defined by formula (4.4). Thus any
vertex ofH∗ is a class of some e∆,Γ. Taking the disjoint union means, in particular,
that if Λ is a class of e∆,Γ and e∆,Γ′ , then V contains two vertices corresponding
to Λ. The partition

π = {∆/e∆,Γ : ∆ ∈ πΩ∗ , Γ ∈ π}

of the set V is treated as a coloring of V .
Let us define the hyperedges of H∗. First, let α ∈ Ω∗. Denote by ∆ the class

of π, containing α. Then ∆ ∈ πΩ∗ . Moreover, for every Γ ∈ π, there is a unique
class Λα(∆,Γ) of the equivalence relation e∆,Γ, containing α. Put

α = {Λα(∆,Γ) : Γ ∈ π},

in particular, α ⊆ V . It is easily seen that α = β if and only if the vertices α
and β are twins in X, lying in the same class of π. Next, let β ∈ Ω∗ is adjacent
to α in X, and Γ the class of π, containing β. Then every vertex in Λα(∆,Γ) is
adjacent to every vertex of Λβ(Γ,∆). Put

{α, β} = {Λα(∆,Γ),Λβ(Γ,∆)},

again {α, β} ⊆ V . With these notation, the hyperedge set of H∗ is defined as
follows:

E∗ = {α : α ∈ Ω∗} ∪ {{α, β} : α, β ∈ Ω∗, β ∈ αX}.

One can see that the hypergraph H∗ = (V,E∗) and the coloring π can be con-
structed in polynomial time in |Ω|.

Theorem 4.11. Let X be a chordal graph, π an invariant stable vertex coloring
of X, Ω∗ = Ω∗(X, π) the critical set, and H∗ = (V,E∗) is the above hypergraph
with vertex coloring π. Then

i max{|∆| : ∆ ∈ π} ≤ ℓ2ℓ, where ℓ = ℓ(X),

ii if X is twinless, then the mapping f : Ω∗ → E∗, α ↦→ α, is a bijection,

iii if X is twinless, G ≤ Sym(E∗) is the group induced by the natural action
of Aut(H∗) on E∗ = E(H∗), then

Aut(X)Ω∗ ≤ Gf−1 ≤ Aut(XΩ∗), (4.9)

where Gf−1 = fGf−1.1
1Note that the composition fGf−1 is defined from left to right.

69

Proof. (i) The color classes of π are the sets ∆/e∆,Γ, where ∆ ∈ πΩ∗ and Γ ∈ π.
By the definition of Ω∗, we have |Conn(X∆)| ≤ ℓ, and Lemma 4.5(2) yields

|Conn(X∆∪Γ)| ≤ min{|Conn(X∆)|, |Conn(XΓ)|} ≤ ℓ. (4.10)

Further, let Y ∈ Conn(X∆∪Γ). Then by Lemma 4.3(2), the coloring πY is stable.
It has two classes, one inside ∆ and the other one inside Γ; denote them by ∆Y

and ΓY , respectively. Note that by Lemma 4.3(2), at least one of the graphs X∆Y
,

XΓY
is complete. From Lemma 4.9, we obtain

|∆/e∆,Γ| ≤ max{ℓ, 2ℓ} ≤ 2ℓ. (4.11)

Since the equivalence relation e∆,Γ is the union of the equivalence relations e∆Y ,ΓY
,

Y ∈ Conn(X∆∪Γ), inequalities (4.10) and (4.11) imply

|∆/e∆,Γ| =
∑︂

Y ∈Conn(X∆∪Γ)
|e∆Y ,ΓY

| ≤ ℓ 2ℓ,

as required.
(ii) Assume that X is twinless. Let α ∈ Ω∗ and let ∆ ∈ π contain α. Denote

by Λα the intersection of all Λα(∆,Γ), Γ ∈ π. Note that every β ∈ Λα belongs
to ∆. Moreover,

αX ∩ Γ = βX ∩ Γ
for all Γ ̸= ∆, and

(αX ∩∆) \ {β} = (βX ∩∆) \ {α}.

It follows that α and β are twins in X. Since X is twinless, we conclude that
α = β. Thus,

Λα = {α} for all α ∈ Ω∗.

Now assume that f(α) = f(β) for some α, β ∈ Ω∗. Then Λα = Λβ and the above
formula implies {α} = Λα = Λβ = {β}. Thus, α = β and f is injective.

(iii) Assume that X is twinless. By (ii), the mapping f is a bijection. Let
g ∈ Aut(X) and α ∈ Ω∗. Then α lies in some ∆ ∈ πΩ∗ . Since π is invariant and
stable, we have e∆g ,Γg = e∆,Γ and so

Λα(∆,Γ)g = Λαg(∆,Γ)

for every Γ ∈ π. Therefore,

(α)f−1gf = {Λα(∆,Γ)g : Γ ∈ π}f = {Λαg(∆,Γ) : Γ ∈ π}f = αg

and

{α, β}f−1gf = {Λα(∆,Γ)g,Λβ(Γ,∆)g}f = {Λαg(∆,Γ),Λβg(Γ,∆)}f = {αg, βg}.
(4.12)

Thus, f−1gf ∈ G, which proves the left-hand side inclusion in (4.9).
Let α, β ∈ Ω∗. Denote by ∆ and Γ the classes of π, containing α and β,

respectively. Then α and β are adjacent in X if and only if every vertex in
Λα(∆,Γ) is adjacent to every vertex of Λβ(Γ,∆), or equivalently, {α, β} ∈ E∗.
Thus, the right-hand side inclusion in (4.9) follows from (4.12).

70

4.5 A hypergraph associated with complement
of the critical set

The goal of this section is to provide some tools related with critical set to find
the automorphism group of a chordal graph.

Theorem 4.12. Let X be a chordal graph on Ω, π an invariant stable coloring
of X, and Ω∗ the critical set of X with respect to π. Denote by G⋄ = G⋄(X) the
kernel of the restriction homomorphism Aut(X)→ Aut(X)Ω∗. Then a generating
set of G⋄ can be found in in polynomial time in |Ω|.

Proof. Without loss of generality, we may assume that the set Ω⋄ = Ω \ Ω∗ is
not empty. Let us define a vertex coloring π⋄ of the graph X⋄ = XΩ⋄ , such that
π⋄(α) = π⋄(β) if and only if π(α) = π(β) and αX ∩Ω∗ = βX ∩Ω∗. It is not hard
to see that

(G⋄)Ω⋄ = Aut(X⋄, π⋄).

Since also the graph X⋄ is interval (see the definition of the critical set), a gen-
erating set of (G⋄)Ω⋄ can be found by the algorithm in [40, Theorem 3.4], which
constructs a generating set of the automorphism group of a vertex colored interval
graph efficiently. Since (G⋄)Ω∗ = {idΩ∗}, we are done.

In what follows, X is a chordal graph, π a stable coloring of X, and Ω∗ the
critical set of X with respect to π. Recall that by the definition of critical set,
every graph Y , Y ∈ Conn(XΩ⋄), is interval, and

∂Y = Ω(Y) ∩ Ω∗.

Lemma 4.13. For every Y ∈ Conn(XΩ⋄), there is a colored hypergraph H = HY

whose vertex set is ∂Y colored by π∂Y , and such that

Iso(HY , HY ′) = Iso(Y , Y ′)∂Y , Y ′ ∈ Conn(XΩ⋄). (4.13)

Moreover, in polynomial time in the size of Y one can

a construct the hypergraph HY ,

b given g ∈ Iso(HY , HY ′), find g ∈ Iso(Y , Y ′)∂Y such that g∂Y = g.

Proof. We make use of the results of [61]. Namely, let Z be an interval graph
and πZ a stable coloring of Z. From [61, Theorem 6.10 and Proposition 6.4], it
follows that there exists a canonical rooted tree T = T (Z) and a stable coloring
πT of T such that

L(T) = Ω(Z) and πZ = (πT)L(T). (4.14)

The term “canonical” means that for every interval vertex colored graph Z ′, the
isomorphisms between Z and Z ′ are related with the isomorphisms between T
and T ′ = T (Z ′) as follows:

Iso(T, T ′)L(T) = Iso(Z,Z ′). (4.15)

71

Moreover, the proof of [61, Proposition 6.4] shows that the sizes of T and πT are
polynomials in |Ω(Z)|, and T and πT can be constructed in polynomial time.

Now let Y ∈ Conn(XΩ⋄). Since the graph Y is interval, one can define the
rooted tree T = T (Y) as above. Next, for each vertex x of T , we introduce the
following notation:

• L(x) is the set of all descendants of x in T , lying in L(T),

• Tx is the subtree of T rooted at x and such that L(Tx) = L(x) \ ∂Y ,

• F (Tx) is a string encoding the isomorphism type of the rooted tree Tx.

Now for each x with L(x) ∩ ∂Y ̸= ∅ and L(x) \ ∂Y ̸= ∅, we delete from T
all the vertices of Tx, except for x, and define the new color of x to be equal
(πT (x), F (Tx)). Denote the resulting tree and its vertex coloring by T1 = T1(Y)
and π1 = π1(Y), respectively. Then

L(T1) = ∂Y. (4.16)

It is not hard to see that T1 and π1 can efficiently be constructed, and T and πT

are uniquely recovered from T1 and π1. In particular,

Iso(T1, T
′
1)∂Y = Iso(Y , Y ′), (4.17)

where Y ′ ∈ Conn(X − Ω∗) and T ′
1 = T1(Y ′), respectively, cfg., (4.14) and (4.15).

At this point we can define the required hypergraph HY = (∂Y,EY), where

EY = {L(x) : x ∈ Ω(T1(Y))}.

Note that L(x) = L(y) if and only if x = y or one of x, y is the descendants of
the other in T1, and if, say y is the descendant of x, then for each vertex z ̸= y
of the path Pyx connecting y with x, we have L(x) = L(z); moreover, in the
latter case, z has a unique son in T1. Thus for each e ∈ EY there exist uniquely
determined vertex xe and its descendant ye such that

L(z) = e ⇔ z ∈ Ω(Pyexe) and z ̸= ye if xe ̸= ye.

In particular, if xe = ye := x, then L(x) = L(z) if and only if x = z.
To define the color of the hyperedge e ∈ EY , let Ω(Pyexe) = {y0, y1, . . . yk},

where k ≥ 0 is the length of Pyexe , y0 = ye, yk = xe, and yi is the son of yi+1,
i = 0, . . . , k − 1. Then the color of e is set to be the tuple

(π1(y1), . . . , π1(yk)).

Again, it is clear that the hypergraph HY and its coloring can be constructed
efficiently and that they determine the colored tree T1 in a unique way. Thus the
statement of the lemma is a consequence of formulas (4.16) and (4.17).

Let us define an order-2 colored hypergraph H⋄ with vertex set Ω∗ and hy-
peredge set E1 ∪ E2, where

E1 =
⋃︂

Y ∈Conn(XΩ⋄)
E(HY) and E2 = {E(HY) : Y ∈ Conn(XΩ⋄}.

72

The vertex coloring ofH⋄ is set to be πΩ∗ . Note that the union in the definition
of E1 is not disjoint; the color π⋄(e) of a hyperedge e ∈ E1 is defined to be the
multiset of the colors of e in HY , where Y runs over all graphs Y ∈ Conn(XΩ⋄)
such that e ∈ E(HY).

To define a coloring of E2, denote by ∼ the equivalence relation on Conn(XΩ⋄)
by setting

Y ∼ Y ′ ⇔ HY = HY ′ .

Condition (4.13) implies that Y ∼ Y ′ if and only if there exists an isomorphism
g ∈ Iso(Y , Y ′) such that the bijection g∂Y is identical. The color π⋄(e) of the
hyperedge e ∈ E2 is defined to be so that if e = {E(HY)} and e′ = {E(HY ′)},
then

π⋄(e) = π⋄(e′) ⇔ Iso(Y , Y ′) ̸= ∅ and nY = nY ′ , (4.18)
where nY and nY ′ are the cardinalities of the classes of the equivalence relation ∼,
containing Y and Y ′, respectively.
Remark 4.14. Let e ∈ E2 and Y ∈ Conn(X − Ω∗) be such that e = E(HY). In
general, the coloring πe of the hyperedges of E1, contained in e, is different from
the coloring πY of the corresponding hyperedges of HY . However, πe ≥ πY and
πY is uniquely determined by πe.

Lemma 4.15. Let X ′ be a colored graph obtained from X by deleting all edges
of the induced subgraph XΩ∗. Then

Aut(H⋄) = Aut(X ′)Ω∗
.

Moreover, given g ∈ Aut(H⋄) one can construct g ∈ Aut(X ′) such that gΩ∗ = g
in polynomial time in |Ω|.

Proof. Let g ∈ Aut(X ′). Since the set Ω∗ is Aut(X ′)-invariant, the permuta-
tion g = gΩ∗ preserves the coloring πΩ∗ . Moreover, g induces a permutation

Y ↦→ Y ′, Y ∈ Conn(X − Ω∗), (4.19)
such that (∂Y)g = ∂Y ′ for all Y , and the isomorphisms

gY ∈ Iso(Y , Y ′), Y ∈ Conn(X − Ω∗).

By formula (4.13), we have (gY)∂Y = g∂Y ∈ Iso(HY , HY ′). Now, let e ∈ E1. Then
e ∈ E(HY) for some Y ∈ Conn(X − Ω∗). It follows that

eg = egY ∈ E(HY ′) for all e ∈ E(HY).

Consequently, the permutation g preserves the hyperedges of E1. Because the
isomorphism gY is color preserving, g preserves also the colors of them. Finally,
the automorphism g ∈ Aut(X ′) preserves the relations on the right-hand side of
formula (4.18) and hence the permutation (4.19) leaves the equivalence relation ∼
fixed. Since g induces the same permutation, we conclude that g preserves the
colors of the hyperedges of E2. Thus, g ∈ Aut(H⋄).

Conversely, let g ∈ AutH⋄. Formula (4.18) implies that g induces a cardi-
nality preserving permutation of the classes of the equivalence relation ∼. Con-
sequently, there is a permutation (4.19) such that Iso(HY , HY ′) ̸= ∅; although

73

such a permutation is not necessarily unique, one can efficiently find at least one
such permutation.

Recall that Eg
1 = E1. Moreover, the hyperedges from E(HY) ∈ E2 go to the

edges from E(HY ′) ∈ E2. Therefore (see Remark 4.14),

gY := g ∂Y ∈ Iso(HY , HY ′). (4.20)

By formula (4.13), there exists a bijection gY ∈ Iso(Y , Y ′) such that

g∂Y
Y = gY , (4.21)

and this bijection can efficiently be found (Lemma 4.13(b)). Now we define a
permutation g ∈ Sym(Ω) by setting αg = αgY , where Y is an arbitrary element
of Conn((X − Ω∗), for which α ∈ Ω(Y). The permutation g is well defined,
because by (4.20) and (4.21),

αgY = αgY = αg = αgZ = αgZ

for all Z ∈ Conn((X − Ω∗) and all α ∈ ∂Y ∩ ∂Z. It remains to note that
g ∈ Aut(X ′), because g moves edges of each Y to Y ′, and E(X ′) is the union of
the sets E(Y).

The following theorem is the main result of the section, which together with
Theorem 4.12 essentially provides a polynomial-time reduction of finding the
group Aut(X) to finding the groups Aut(H∗) and Aut(H⋄).

Theorem 4.16. In the conditions of Theorem 4.11,

Aut(X)Ω∗ = Aut(H∗)f−1 ∩ Aut(H⋄).

Moreover, every permutation g ∈ Aut(H⋄)∩Aut(H∗)f−1 can be lifted to an auto-
morphism g ∈ Aut(X) such that gΩ∗ = g in polynomial time in |Ω|.

Proof. By Theorem 4.11, we have Aut(X)Ω∗ ≤ Aut(H∗)f−1 . Furthermore, the
group Aut(X) is a subgroup of Aut(X ′), where X ′ is the graph from Lemma 4.15.
By that lemma, this implies that Aut(X)Ω∗ ≤ Aut(X ′)Ω∗ = Aut(H⋄). Thus,

Aut(X)Ω∗ ≤ Aut(H⋄) ∩ Aut(H∗)f−1
.

Conversely, let g ∈ Aut(H∗)f−1∩Aut(H⋄). By Lemma 4.15, one can efficiently
find g ∈ Aut(X ′) such that gΩ∗ = g. Now, by Theorem 4.11 the permutation g
preserves the edges of X contained in E(XΩ∗). The other edges of X are exactly
those in E(X ′) and g preserves them by Lemma 4.15. Thus,

E(X)g = (E(XΩ∗) ∪ E(X ′))g = E(XΩ∗)g ∪ E(X ′)g = E(XΩ∗) ∪ E(X ′) = E(X),

i.e., g ∈ Aut(X), as required.

74

4.6 Order-k hypergraph isomorphism: bounded
color classes

The goal of this section is to design an FPT algorithm for testing isomorphism of
colored k-hypergraphs in which the sizes of vertex color classes are bounded by a
fixed parameter; no assumption is made on the hyperedge color class sizes. The
algorithm we present is a generalization of the one for usual hypergraphs [4].

Theorem 4.17. Let k ≥ 1. Given two colored order-k hypergraphs H and H ′,
the isomorphism coset Iso(H,H ′) can be computed in time (b! s)O(k), where b is
the maximal size of a vertex color class of H and s is the size of H. In particular,
the group Aut(H) can be found within the same time.

The proof of Theorem 4.17 is given in the end of the section. We start with
some notation and definitions; most of them go back to those in [4]. In what
follows, we fix a finite set V and the decomposition of V into the disjoint union
of its color classes,

V = C1 ⊔ C2 ⊔ · · · ⊔ Cm, (4.22)
where m ≥ 1 and |Ci| ≤ b for each i. For every higher order hyperedge e, we
consider its projections to unions of the color classes,

e(i) = eC1∪C2∪···∪Ci , 0 ≤ i ≤ m,

see Section 4.2. Obviously, e(0) = ∅ and e(m) = e.
i-equivalence. Let i ∈ {0, . . . ,m}. Two order-k hyperedges e and e′ are said

to be i-equivalent if the multisets e(i) and e′ (i) are equal. The following statement
is straightforward.

Proposition 4.18.

1. any two high order hyperedges are 0-equivalent,

2. for i ≥ 1, any two i-equivalent high order hyperedges are (i− 1)-equivalent,

3. two high order hyperedges are m-equivalent if and only if they are equal.

i-blocks. Let H = (V,E) be an order-k hypergraph. For every i = 0, . . . ,m,
the i-equivalence partitions the set E into equivalence classes called i-blocks; the
set of all of them is denoted by Êi. From Proposition 4.18, it follows that

ˆ︁E0 = {E} and ˆ︁Em = E. (4.23)

Hypergraphs A[i] associated with i-blocks. Each i-block A ∈ ˆ︁Ei defines
an order-k hypergraph (V,A), which is just H if i = 0, and is essentially the
order-(k − 1) hypergraph (V, e) if i = m and A = {e} for some e ∈ E. Denote by
A[i] the order-k hypergraph on the set

Vi = Ci ⊔ Ci+1 ⊔ · · · ⊔ Cm,

obtained from the projection AVi of A to Vi by replacing each multiset eVi , e ∈ A
with the corresponding set (without repetitions). Then A[0] = H.

75

Coloring of A[i]. Assume that the hypergraph H is colored. The vertex
coloring of the hypergraph A[i] is defined in a natural way, whereas the color of
the hyperedge corresponding to eVi is defined as a multiset

{{π(˜︁e) : ˜︁e Vi = eVi , ˜︁e ∈ A}},
where π is the coloring of E(H). One can see that if H ′ = (V,E ′) is an order-k
hypergraph, A′ ∈ ˆ︁E ′

i, and f ∈ Iso(H,H ′) is such that fVi is a color preserving
isomorphism from A[i] to A′[i], then f is also color preserving.

Proof of Theorem 4.17. Let H = (V,E) and H ′ = (V ′, E ′) be colored order-k
hypergraphs. Without loss of generality we may assume that there is a decompo-
sition of V ′ similar to (4.22) with the same m and b. Our aim is to design an al-
gorithm of running time x(k, s, b) = (b! s)O(k) for computing the coset Iso(H,H ′).

Inductively, assume that k ≥ 2 and we have such an algorithm for order-(k−1)
hypergraphs of running time x(k− 1, s, b). As the base case for the induction, by
[4, Corollary 9], we already have

x(1, s, b) = 2O(b) poly(s). (4.24)

The algorithm for order-k hypergraphs will invoke as subroutine the algorithm
for order-(k − 1) hypergraphs. Put

C(k, i;H,H ′) = {Iso(A[i], A′[i]) : A ∈ ˆ︁Ei, A
′ ∈ ˆ︁E ′

i}, 0 ≤ i ≤ m.

The algorithm below computes the collections C(k, i;H,H ′) for decreasing
values of i from m down to 0. Specifically, for each i, it first computes the
set C(k, i + 1;H,H ′) and uses it for computing the set C(k, i;H,H ′). Since
A[0] = H and A′[0] = H ′, notice that we will finally have computed Iso(H,H ′) =
C(k, 0;H,H ′) as required.

Algorithm for computing C(k, 0;H,H ′)
Input: colored order-k hypergraphs H = (V,E) and H ′ = (V ′, E ′), k > 1.
Output: the table of all C(k, i;H,H ′), 0 ≤ i ≤ m.
For i := m down to 1 do

for all A ∈ ˆ︁Ei and A′ ∈ ˆ︁E ′
i add to C(k, i;H,H ′) the coset Iso(A[i], A′[i])

computed below.
Step 0. If i = m

then A[i] and A′[i] are order-k hypergraphs on the sets Cm and C ′
m of cardi-

nality at most b. In this case Iso(A[i], A′[i]) can be computed in time O(b!).
else

Step 1. Construct the (k − 1)-skeleton hypergraphs Y = A[i](k−1) and Y ′ =
A′[i](k−1) (see Section 4.2).
Step 2. Compute Kτ := Iso(Y, Y ′) = C(k − 1, 0;Y, Y ′) by using the algorithm
for order-(k − 1) hypergraphs as subroutine.
Step 3. Computation of Iso(A[i], A′[i]):

Step 3.1. Let A1, A2, . . . , Aℓ and A′
1, A

′
2, . . . , A

′
ℓ′ be the (i + 1)-blocks con-

tained in A and A′, respectively; if ℓ ̸= ℓ′, then set Iso(A[i], A′[i]) = ∅.

76

Step 3.2. Find the set P ≤ Sym(ℓ) of all permutations induced by Kτ
as the bijections from Ci+1 to C ′

i+1 which maps the set {A1, A2, . . . , Aℓ} to
{A′

1, A
′
2, . . . , A

′
ℓ}; note that |P | ≤ b!.

Step 3.3. Using the algorithm in [4, Theorem 5], compute the coset

Iso(A[i], A′[i]) =
⋃︂

π∈P

ℓ⋂︂
j=1
, Iso(Aj[i+ 1], A′

π(j)[i+ 1]) (4.25)

where the cosets on the right-hand side are available from the set C(k, i+1;H,H ′)
found earlier.

end-for

Correctness and Analysis. By induction, it suffices to see how Step 3 com-
putes Iso(A[i], A′[i]). Notice that the union on the right-hand side of (4.25) with
P replaced by the set of all bijections from Ci+1 to C ′

i+1 gives the coset Hν of
all isomorphisms from A[i] to A′[i] projected to Vi+1 and V ′

i+1. Since A and A′

are i-blocks, they are single order-k hyperedges on color class Ci and C ′
i, respec-

tively. In view of formula (4.1), the coset Kτ = Iso(Y, Y ′) restricted to Ci and
C ′

i precisely includes all the isomorphisms from A[i] to A′[i] restricted to Ci and
C ′

i. Hence, Kτ ∩Hν is precisely Iso(A[i], A′[i]) which is computed at Steps 3.3.
We now analyze the running time x(k, s, b) for the computation of the set

C(k, 0;H,H ′). The outer for-loop executes m times and the inner for-loop exe-
cutes at most |E|2 times (for each pair A, A′ of i-blocks).

We bound the time required for computing each C(k, i;H,H ′). By induction,
each iteration of Steps 0-2 require time

O(|E|2 · b!) + x(k − 1, s, b) + poly(s).

The number ℓ in Step 3.1 is at most |E|. Therefore the cost of Steps 3.1-3.2
is at most |E| |P | poly(s) ≤ b! poly(s). Finally, in Step 3.3, we compute at
most b! intersections of ℓ cosets available in the already computed set C(k, i +
1, H,H ′). Since the intersection of two such cosets by the algorithm from [4,
Theorem 5] requires 2O(b) · poly(s) time, the overall cost of Step 3 is at most
O(b!) poly(s). Putting it together, the time spent in computing C(k, i;H,H ′),
given the pre-computed table entries for C(k, i+ 1, H,H ′), is bounded by x(k −
1, s, b) · O(b!) poly(s). It follows that the overall time for computing C(k;H,H ′)
is bounded by m · |E|2 · x(k − 1, s, b) ·O(b!) poly(s). Thus, we have

x(k, s, b) ≤ m · |E|2 · x(k − 1, s, b) ·O(b!) poly(s) ≤ x(k − 1, s, b) · (b! · s)c,

for a suitable constant c > 0. By induction hypothesis x(k−1, s, b) ≤ (b!·s)c·(k−1).
Hence, we obtain an overall upper bound of (b! · s)c·k for the running time of the
algorithm for order-k hypergraphs.

4.7 Proof of Theorem 4.2
Based on the results obtained in the previous sections, we present an algorithm
that constructs the automorphism group of a chordal twinless graph.

77

Main Algorithm

Input: a chordal twinless graph X and vertex coloring π of X.
Output: the group Aut(X, π).
Step 1. Construct π = WL(X, π) and Ω∗ = Ω∗(X, π).
Step 2. While the set Ω∗ is not critical with respect to π, find π := WL(X, π′)
and set Ω∗ := Ω∗(X, π), where π′ is the coloring from Theorem 4.10(ii).
Step 3. If Ω∗ = ∅, then X is interval and we output the group Aut(X, π) found
by the algorithm from [118, Theorem 5].
Step 4. Construct the mapping f and colored hypergraph H∗ on (Ω∗)f , defined
in Section 4.4, and the colored hypergraph H⋄ on Ω∗, defined in Section 4.5.
Step 5. Using the algorithm from Theorem 4.17, find a generating set S of the
automorphism group of the colored order-3 hypergraph H∗ ↑ (H⋄)f .
Step 6. For each g ∈ S find a lifting g ∈ Aut(X, π) of fgf−1 ∈ Sym(Ω∗) by the
algorithm from Theorem 4.16; let S be the set of all these automorphisms g’s.
Step 7. Output the group Aut(X, π) = ⟨G⋄, S⟩, where G⋄ is the group defined
in Theorem 4.12.

Theorem 4.19. The Main Algorithm correctly finds the group Aut(X, π) in time
t(ℓ) · nO(1), where n = |Ω(X)|, g is a function independent of n, and ℓ = ℓ(X).

Proof. Note that the number of iterations of the loop at Step 2 is at most n,
because |π| ≤ n and |π′| > |π|. Next, the running time at each other step, except
for Step 5, is bounded by a polynomial in n, see the time bounds in the used
statements. On the other hand, at Step 5, the cardinality of each vertex color
class of the order-3 hypergraph H∗ ↑ (H⋄)f is at most ℓ2ℓ (Theorem 4.11(i)). By
Theorem 4.17 for b = ℓ2ℓ, the running time of the Main Algorithm is at most
t(ℓ) · nO(1) with t(ℓ) = (ℓ2ℓ)!.

To prove the correctness of the algorithm, we exploit the natural restriction
homomorphism

φ : Aut(X)→ Sym(Ω∗), g ↦→ gΩ∗
.

Given a generating set S ′ of the group ℑ(φ), we have Aut(X) = ⟨Ker(φ), S⟩,
where S ⊆ Aut(X) is a set of cardinality |S| such that S ′ = {φ(g) : g ∈ S}.

According to Step 7, Ker(φ) = G⋄. Thus, it suffices to verify that as the set
S ′ one can take the set {fgf−1 : g ∈ S}, where f is the bijection found at Step 4
and S is the generating set of the group Aut(H∗ ↑ (H⋄)f), found at Step 5. By
Theorem 4.16, we need to check that

Aut(H∗ ↑ (H⋄)f)f−1 = Aut(H∗)f−1 ∩ Aut(H⋄). (4.26)

Notice that

h ∈ Aut(H∗ ↑ (H⋄)f) ⇔ h ∈ Aut(H∗) and (E(H⋄)f)h = E(H⋄)f

⇔ fhf−1 ∈ Aut(H∗)f−1 and fhf−1 ∈ Aut(H⋄)
⇔ fhf−1 ∈ Aut(H∗)f−1 ∩ Aut(H⋄),

which proves equality (4.26).

78

Proof of Theorem 4.2. Denote by eX the equivalence relation on Ω = Ω(X) such
that (α, β) ∈ eX if and only if the vertices α and β are twins in X. Since eX is
Aut(X)-invariant, there is a natural homomorphism

φ : Aut(X)→ Sym(Ω/eX).

To find the group Aut(X), it suffices to construct generating sets of the groups
Ker(φ) and ℑ(φ), and then to lift every generator of the latter to an automor-
phism of X.

First, we note that every class of the equivalence relation eX consists of twins
of X. Consequently,

Ker(φ) =
∏︂

∆∈Ω/eX

Sym(∆),

and this group can efficiently be found.
Now let X ′ be the graph with vertex set Ω/e, in which the classes ∆ and Γ

are adjacent if and only if some (and hence each) vertex in ∆ is adjacent to some
(and hence each) vertex of Γ. Note that X ′ is isomorphic to an induced subgraph
of X, and hence belongs to the class Kℓ. Let π′ be the vertex coloring of X ′ such
that π′(∆) = π′(Γ) if and only if |∆| = |Γ|. Then

ℑ(φ) = Aut(X ′, π′),

and this group can efficiently be found in time t(ℓ) · nO(1) by Theorem 4.19.
To complete the proof, we need to show that given g′ ∈ Aut(X ′, π′), one can

efficiently find g ∈ Aut(X) such that φ(g) = g′. To this end, choose an arbitrary
bijection g∆ : ∆ → ∆g; recall that π′(∆) = π′(∆g) and so |∆| = |∆g|. Then the
mapping g taking a vertex α ∈ Ω to the vertex αg∆ , where ∆ is the class of eX ,
containing α is a permutation of Ω. Moreover, from the definition of eX , it follows
that g ∈ Aut(X). It remains to note that g can efficiently be constructed.

4.8 GI-completeness for H-graphs
In the previous sections, we derived an FPT algorithm for testing isomorphism of
bounded leafage chordal graphs. In this last section, we prove a hardness result for
related classes of graphs, called H-graphs, which were already mentioned briefly
in the beginning of the chapter.

For a graph H let S(H) be the set of all of its connected subgraphs. A
subdivision of a graph H is obtained by replacing the edges of H by internally
disjoint paths of arbitrary length. An H-representation of a graph G is a mapping
R : V (G)→ S(H) such that R(v) ∩ R(u) ̸= ∅ if and only if the vertices u and v
are adjacent. We say that a graph G is an H-graph if there is a subdivision H ′

of H such that G has an H ′-representation.
This concept generalizes many importnat classes of graphs: interval graphs

are K2-graphs, circular-arc graphs are K3-graphs, chordal graphs are the union
of all T -graphs, where T is a tree. Moreover, it is easy to see that every graph
is an H-graph for a suitable graph H. Thus, H-graphs provide an interesting
parametrization of all graphs.

79

.

.

.

Figure 4.1: A circular-arc representation of the complement of a matching K2n−
2Kn.

We prove that if H is not a unicyclic graph, then the isomorphism problem on
H-graphs is GI-complete, i.e., as hard as the general graph isomorphism problem.
The key is the following theorem, where B denotes the 5-vertex graph consisting
of two triangles with one vertex identified.

Theorem 4.20. The class of all B-graphs is GI-complete.

Note that if a graph H1 is a minor of a graph H2, then every H1-graph is an
H2-graph. This immediatelly gives the following.

Corollary 4.21. If H is not unicyclic, then the class of all H-graphs is GI-
complete.

To prove Theorem 4.20, we first prove several lemmas.

Lemma 4.22. If G be a disjoint union of stars, then the complement of G is a
circular-arc graph.

Proof. Let X ⊆ V (G) be the vertices of degree 1 in G and let Y = V (G) \ X.
For every vertex v ∈ Y , the neighborhood NG(v) of v forms an equivalence class
of true twins in G. The quotient graph of G with respect to this equivalence
relation is exactly the complement of a matching, which is a well-known circular-
arc graph; see Figure 4.1. This implies that G is also a circular-arc graph.

For any connected graph G = (V,E), we construct a new graph G′ in several
steps as follows. First, let G1 = (V ∪V1, E

′) be the graph resulting from sudividing
each edge of G and let G2 = (V ∪ V1 ∪ V2, E

′′) be the graph resulting from
subdividing each edge of G1. Further, let G3 be the graph obtained from G2 by
adding all the edges between V and V1. Finally, we set the graph G′ to be the
complement of G3.

Lemma 4.23. Let G be a connected graph. With the above notation, the graph
G′ is an B-graph.

Proof. First note that the induced subraphs G2[V ∪V2] and G2[V1∪V2] are disjoint
unions of stars. Thus, by Lemma 4.22, the induced subgraphs G′[V ∪ V2] and
G′[V1 ∪ V2] are circular-arc graphs with representations R1 : V ∪ V2 → S(C1) and

80

R2 : V1 ∪ V2 → S(C2), respectively, for some cycles C1 and C2. Moreover, both
representations can be chosen so that there are points p1 ∈ V (C1) and p2 ∈ V (C2)
such that
p1 ∈

⋂︂
v∈V2

R1(v), p1 /∈
⋃︂

v∈V

R1(v), and p2 ∈
⋂︂

v∈V2

R2(v), p2 /∈
⋃︂

v∈V1

R2(v).

(4.27)
Let H be the graph obtained from C1 and C2 by indentifying the points p1 and
p2. Clearly H is a subdivision of B. Let R : V ∪ V1 ∪ V2 → S(H) be the mapping
defined by

R(v) =

⎧⎪⎪⎨⎪⎪⎩
R1(v) if v ∈ V ,
R1(v) ∪R2(v) if v ∈ V2,

R2(v) if v ∈ V1.

Since there are no edges between V and V1 in G′, it follows from (4.27) that R is
an H-representation of G′ and, therefore, G′ is an B-graph.
Lemma 4.24. Let G and H be connected graphs with minimum degree at least
three. With the above notation, the graphs G and H are isomorphic if and only
if the graphs G′ and H ′ are isomorphic.
Proof. Since subdividing each edge and taking complements preserves the iso-
morphism relation, it follows that G ∼= H if and only if G2 ∼= H2, and, G3 ∼= H3
if and only if G′ ∼= H ′. Thus, it suffices to prove that G2 ∼= H2 if and only if
G3 ∼= H3.

Let f : G → H be an isomorphism and let f2 : G2 → H2 be the isomorphism
such that f2|V (G) = f . We have

f2(V (G)) = V (H) and f2(V1(G)) = V1(H). (4.28)
The graph G3 is constructed by adding all edges between V (G) and V1(G). Like-
wise, the graph H3 is constructed by adding all edges between V (H) and V1(H).
From (4.28) it follows that f2 is also an isomorphism from G3 to H3.

For the reverse implication, first note that for any vertex v of G3, we have

degG3(v) =

⎧⎪⎪⎨⎪⎪⎩
degG(v) + |V1(G)| if v ∈ V (G),
2 + |V (G)| if v ∈ V1(G),
2 if v ∈ V2(G).

Note that the degree is constant on V1(G) and on V2(G). An analogous formula
is true for every vertex in H3. Since the minimum degree in G is three, we have

2 + |V (G)| ≥ 6 and degG(v) + |V1(G)| ≥ 3 + 3/2|V (G)| > 2 + |V (G)|.
Again, analogous inequalities hold in H3. We have that an isomorphism f3 : G3 →
H3 satisfies

f3(V (G)) = V (H), f3(V1(G)) = V1(H) and f3(V2(G)) = V2(H).
Thus, f3 is also an isomorphism G2 → H2.

Proof of Theorem 4.20. Clearly, for a graph G, the graph G′ can be constructed
in polynomial time. By Lemma 4.23, G′ is an 8-graph. Clearly the class of all
graphs with minimum degree three is GI-complete. By Lemma 4.24, two graphs
G and H with minimum degree three are isomorphic if and only if the graphs G′

and H ′ are isomorphic. It follows that the class of all B-graphs is GI-comlete.

81

82

5. Automorphism groups of
planar graphs

5.1 Introduction
Automorphism groups of planar graphs were first studied by Babai in 1973. The
automorphism groups of 3-connected planar graphs are the well-known spherical
groups. Thus, it is natural to try to reduce the problem to 3-connected planar
graphs. Indeed, Babai first decomposes a planar graph into blocks and after that
each block into 3-connected planar graphs. The key problem is to understand
how the automorphism group of a planar graph can be reconstructed from the
automorphism groups of these 3-connected components. At some level, Babai
solved this problem in [8, Corollary 8.12], however, he points out that his char-
acterization is not inductive:

“For the case of planar graphs, we determine the groups occurring
in the Main Theorem, as abstract groups (up to isomorphism). [. . .]
It cannot be, however, considered as a characterization by recursion
of the automorphism groups of the planar graphs, since the group
construction refers to the action of the constituents of the wreath
products.”

Our characterization. The characterization of the automorphism groups of
planar graphs, described in this chapter, is inductive. The proof uses three main
ideas/concepts representing three fields of mathematics: graph theory, group
theory and geometry.

The first key idea, is the idea of 3-connected reduction. The reduction can be
viewed as a function associating to a given planar graph X an irreducible planar
graph XR which is either 3-connected, cycle, K2 or K1. The crucial feature of
the reduction is that information on the automorphism group is preserved, i.e.,
the automorphism group of the original graph can be reconstructed from XR

applying a reverse procedure. The idea of the 3-connected reduction was first
introduced in the seminal papers by Mac Lane [121] and Trakhtenbrot [156]. It
was further extended in [157, 91, 92, 46, 160, 16]. The related decomposition
(onto 3-connected components) can be represented by a tree whose nodes are 3-
connected graphs, and this tree is known in the literature mostly under the name
SPQR-tree [54, 55, 56, 87]. The main difference, compared to our approach, is
that the reduction used in the former literature applies exclusively to 2-connected
graphs. Note that a similar two-stage reduction was used by Babai as well.
We introduce a reduction which reduces simultaneously inclusion minimal parts
separated by 1-cuts and 2-cuts. This allows one to control the changes of the
symmetries in each elementary reduction, see Theorem 5.10 for details. A similar
reduction was used in [64, 65] to study the behaviour of semiregular subgroups
of Aut(X) with respect to 1-cuts and 2-cuts. The 3-connected reduction and its
behaviour with respect to automorphisms of a graph is investigated in Section 5.3.

The inhomogeneous wreath product of groups is the next crucial concept. Sim-
ilarly to the standard wreath product, it is a particular form of a semidirect prod-

83

uct K ⋊H, where the normal part K factorises into a direct product of groups.
Unlike the standard wreath product, these groups are not necessarily isomorphic.
The outer group H acts on the factors of K, permuting the factors. If all the fac-
tors of K represent the same group G, then the inhomogeneous wreath product
is just the standard wreath product G ≀H. Lemmas 1.7, 1.8, 1.9 are of particular
importance, since they allow us to reduce a potentially unbounded number of
group operations to a few operations used in the main Theorems 5.28 and 5.31.
It transpires that by employing the concept of the inhomogeneous wreath product
we are able to express the main result in a comprehensive way (compare to [8,
Pages 69-70]).

The third fundamental tool is of geometric nature. The description of the
wreath products that appear in Theorem 5.31 relies on determining the isomor-
phism classes of point orbits in the actions of spherical groups. This part, omitted
in the Babai’s work, is done in Section 5.4.

All the above ideas are combined in Section 5.6, where the main results of
the chapter are proved. First, in Theorem 5.28 , we present an inductive char-
acterization of the vertex-stabilizers of automorphism groups of planar graphs.
The basic groups are cyclic, dihedral and symmetric groups. The set of abstract
groups that appear as the stabilizers of vertices of planar graphs is characterized
as the smallest set of groups containing the basic groups and closed with respect
to five types of inhomogenous wreath products. Theorem 5.31 completes the
characterization. The resulting set of groups is obtained from the set of vertex-
stabilisers using a small number of well-defined inhomogeneous wreath products
with the spherical groups. More precisely, each spherical group determines one
inhomogeneous wreath product. It follows that our characterization describes the
automorphism groups of planar graphs without referring to planarity explicitly,
as a simple recursive process which builds them from the basic groups. This pro-
vides an efficient step-by-step algorithm for generating the automorphism groups
of planar graphs.

5.2 Extended graphs
For the purposes of this chapter, we define graphs following Tutte [158]. A graph
X is a 3-tuple (E, V, ι), where E is a finite set of edges, V is a finite set of vertices
with V ∩ E = ∅, and ι : E →

(︂
V
2

)︂
∪

(︂
V
1

)︂
is an incidence function. An edge

e ∈ E and a vertex v ∈ V are incident if v ∈ ι(e). An edge e ∈ E is ordinary if
|ι(e)| = 2, otherwise it is a semiedge1 if |ι(e)| = 1. Two edges e, f ∈ E are called
parallel if ι(e) = ι(f). A graph is simple if it has no semiedges and no parallel
edges. A semiedge e is called single if there is no edge parallel with e.

To avoid confusion when working with more graphs, we use V (X) and E(X)
to denote the vertices and edges of X, respectively. For any v ∈ V , we define the
degree of v, denoted by deg(v), to be the number of edges incident to v.

We denote the n-cycle, for n ≥ 3, by Cn. A dipole Dn is a graph consisting of
two vertices joined by n ≥ 2 parallel edges. A semistar Sn is a one-vertex graph
with n ≥ 1 semiedges. The semistar S1 is called trivial.

1Tutte calls these edges loops. In the context of this chapter the only difference between
loop and semiedge is that a semiedge contributes to the degree of a vertex by 1.

84

A graph X ′ = (E ′, V ′, ι′) is a subgraph of X = (E, V, ι) if E ′ ⊆ E, V ′ ⊆ V ,
ι(e) ⊆ V ′ for every e ∈ E ′, and ι′ = ι↾E′ . The subgraph with E ′ = ∅ and V ′ = ∅
will be called null graph. The null graph and the graph X are trivial subgraphs.
If a subgraph is not trivial, it will be called proper. For every v ∈ V , we define
the degree of v in X ′, denoted by degX′(v), to be the number of edges of X ′

incident to v. It follows that the set of all subgraphs of X is partially ordered by
the relation “to be subgraph”. For a subset U ⊆ V a subgraph of X induced by
U , denoted X[U], is the maximal subgraph of X with vertex set U .

Let Y = (E1, V1, ι1) and Z = (E2, V2, ι2) be two subgraphs of a graph X =
(E, V, ι). The union Y ∪ Z is the subgraph (E1 ∪ E2, V1 ∪ V2, ι↾E1∪E2). The
intersection is the subgraph Y ∩ Z = (E1 ∩ E2, V1 ∩ V2, ι↾E1∩E2).

Let n be a non-negative integer. A pair (Y, Z) of proper subgraphs of a graph
X is called an n-separation if E(Y) ∩E(Z) = ∅, X = Y ∪ Z, V (Y) ∩ V (Z) = U ,
|U | = n, and both Y and Z have at least n edges. A set U of vertices of X is an
n-cut, n ≥ 0, if there exists an n-separation (Y, Z) such that V (Y) ∩ V (Z) = U .
Alternatively, we say that Y is separated by U in the graph X, and we set
∂Y = U to be the boundary of Y . The interior Y̊ of Y is the induced subgraph
Y̊ = Y [V (Y)\∂Y] = X[V (Y)\∂Y] ⊂ Y . Note that if Y is a dipole or a semistar,
then Y̊ is the null graph. A graph X is m-connected if it has no n-cut, for every
n < k.

The unique vertex of a 1-cut is called an articulation. A maximal 2-connected
subgraph of a graph X is called a block. Given n-separation (Y, Z) of X deter-
mines an n-cut U uniquelly. On the other hand side, an n-cut may be determined
by a lot of n-separations. A 1-separation (Y, Z) of X is essential if neither Y ,
nor Z is isomorphic to S1. An articulation w is essential, if there exists an essen-
tial 1-separation determining {w}. A 2-separation (Y, Z) of X dermining a 2-cut
{u, v} is essential if there there exists a block B ⊆ X with at least three vertices
such that (Y ∩ B,Z ∩ B) is a 2-separation of B and the degrees degB(u) ≥ 3,
degB(v) ≥ 3. A 2-cut U = {u, v} of X is essential if U is 2-cut determined by an
essential 2-separation.

Observe that a 2-connected graph with at least 2 edges has no semiedges.
Similarly, a 3-connected graph with at least four edges is simple, see [158, page
71]. There are exactly 6 graphs that are m-connected, for any m ≥ 1. These
are the dipoles D2, D3, the complete graphs K1, K2, K3 and the semistar S1, see
[158, page 72].

Colored graphs with oriented edges. We consider graphs with colored
edges. Moreover, some of the edges of the considered graphs may be endowed
with an orientation. By choosing an orientation for an ordinary edge e incident
to vertices u, v in a graph X we mean that we associate to e one of the pairs (u, v)
or (v, u). Even if the orientation is choosen for some of the edges, the graph itself
remains unoriented. The orientations and colors of edges will play role exclusively
only when we consider automorphisms of X. The other properties of X remain
untouched by an orientation and coloring of some edges of X.

Homomorphisms. Let X = (E, V, ι) and X ′ = (E ′, V ′, ι′) be two graphs. A
homomorphism X → X ′ is a mapping α : E ∪V → E ′∪V ′ such that α(E) ⊆ E ′,

85

α(V) ⊆ V ′, and
α(ι(e)) = ι′(α(e)) for every e ∈ E.

It is assumed that for colored graphs with oriented edges, a homomorphism
preserves both the colors and orientations of edges. The latter means: if an edge
e has orientation (u, v), then α(e) has orientation (α(u), α(v)). An isomorphism
X and X ′ is a bijective homomorphism X → X ′. If X and X ′ are isomorphic,
we write X ∼= X ′. An automorphism of X is an isomorphism of X to itself. We
denote the automorphism group of X by Aut(X).

For subgraphs of X, we usually consider only isomorphisms preserving their
boundaries. Let A, A′ be subgraphs of X. An isomorphism α : A → A′ is called
a ∂-isomorphism if α(∂A) = ∂α(A). If such a ∂-isomorphism exists, we say that
A is ∂-isomorphic to A′, denoted A ∼=∂ A

′. Observe that for every subgraph A
and every automorphism α of X, the mapping α|A is a ∂-isomorphism from A to
α(A).

5.3 Reduction to 3-connected graphs
We develop a reduction procedure which applies to any input graph X and ter-
minates in an irreducible graph that does not contain non-trivial semistars or
dipoles, and is irreducible with respect to essential n-cuts for n ≤ 2. Under cer-
tain conditions, we show that the automorphism group Aut(X) can be inductively
reconstructed from the automorphism group of the terminal primitive graph. We
stress that planarity of X is not assumed in this section.

5.3.1 Parts
In this subsection we introduce a fundamental concept of atom.

First we define several types of subgraphs of a connected graph X, which we
will call parts. A star part is any maximal non-trivial semistar, and a dipole part
is any maximal dipole. By S(X), D(X) we denote respectively the set of all star
parts, dipole parts, of X.

Let w be an articulation. A subgraph Y ⊆ X with at least two vertices is a
block part of X separated by {w} if it is an inclusion minimal subgraph satisfying
the following property:

(B) there exists a subgraph Z ⊆ X such that (Y, Z) is an essential 1-separation
determining {w}.

Let U be a 2-cut. A subgraph Y ⊆ X with at least three vertices is a proper
part separated by U if it is an inclusion minimal subgraph satisfying the following
property:

(P) there exists a subgraph Z ⊆ X such that (Y, Z) is an essential 2-separation
determining U .

Lemma 5.1. An essential articulation in a connected graph with at least 2 ver-
tices is a boundary of at least one block part.

An essential 2-cut in a connected graph with at least 3 vertices is a boundary
of at least one proper part.

86

Proof. Assume that the statement does not hold, and let (Y, Z) be an essential
n-separation for n ∈ {1, 2}. If n = 1, then both Y , Z are semistars, and if n = 2
both Y , Z are dipoles. In both cases it means |V (X)| = n, a contradiction.

The next lemma summarise basic properties of block and of proper parts.

Lemma 5.2. Let Y be a block part, or a proper part in X. Then both Y̊ and Y
is connected, Y [∂Y] is edgeless and X[V (Y̊)] = Y̊ .

Proof. Let U = ∂Y be the n-cut determined by an essential n-separation (Y, Z)
of X, n ∈ {1, 2}. By minimality the edges of X[U] belong to Z, hence Y [∂Y] is
edgeless.

Since Y is neither a semistar nor a dipole, there exists a vertex w ∈ V (Y)\U =
V (Y̊). Denote by Cw ⊆ X[V (Y̊)] the connectivity component of containig w. We
claim Cw ⊆ Y̊ . Suppose, to the contrary, that this is not the case. Then Cw

has an edge e ∈ Z such that ι(e) ⊂ V (Cw) ⊂ V (Y̊). On the other hand side,
a vertex incident to e belongs to ∂Y , a contradiction. Hence every connectivity
componenent of X[V (Y̊)] is a subgraph of Y̊ . Suppose Y̊ has another component
C ̸= Cw. We form a new essential n-separation (Y1, Z1) by setting V (Y1) =
V (Y) \ V (C), V (Z1) = V (Z) ∪ V (C), and E(Y1) = E(Y) \ E(Y [V (C) ∪ U]),
E(Z1) = E(Y) ∪ E(Y [V (C) ∪ U]). Since Y1 ⊂ Y is a proper subgraph we get a
contradiction to the minimality of Y . Thus X[V (Y̊)] = Y̊ = Cw. In particular,
Y̊ is connected. Since X is connected, there exists a path P joining v to U . Since
U is a cut, P ⊆ Y . If |U | = 1, this proves that Y is connected. If U = {u, v} is
of size two, we may choose w ∈ Y̊ such that w belongs to a block B containing
both u and v. Then there are two (internally disjoint) paths P and Q joining w
to u and to v, respectively. Since w ∈ V (Y̊) and {u, v} is a 2-separation both
P ⊆ Y and Q ⊆ Y . Thus Y is connected.

We denote by PB(X,w) the set of all block parts ofX separated by articulation
w. Similarly, we denote by PP (X,U) the set of all proper parts of X separated
by 2-cut U . Let PB(X) = ∪wPB(X,w), where w ranges through all articulations
of X, and let PP (X) = ∪UPB(X,U) where U ranges through all 2-cuts of X.
Finally, set P(X) = PB(X) ∪PP (X) ∪ S(X) ∪D(X) to be the set of all parts of
the graph X.

5.3.2 Atoms and primitive graphs
The inclusion-wise minimal elements of P(X) are called atoms and the set of
all atoms of X will be denoted by A(X). We distinguish star atoms, dipole
atoms, block atoms, and proper atoms, according to the type of the defining part.
Observe that all star parts and dipole parts are already atoms. Figure 5.1 displays
distinguished types of atoms. A connected graph containing no atoms is called
primitive.

The graph X obtained from X by removing all the semiedges is called the
essence of X. We say that X is essentially 3-connected if X contains no non-
trivial semistars and X is 3-connected. Note that a 3-connected graph is either
simple, or one of S1, D2, D3. Similarly, X is essectially a cycle if X has no non-
trivial semistars and X is a cycle. Let A be a proper atom with ∂A = {u, v}.

87

block/star atoms proper atoms dipoles

Figure 5.1: An example of a graph with denoted atoms. The white vertices belong
to the boundary of some atom, possibly several of them.

By Lemma 5.2 the vertices u, v are non-adjacent. We define the extended proper
atom by setting A+ = A + e, where e is an ordinary edge joining u to v. Now,
we investigate some properties of atoms.

Lemma 5.3. If X is a primitive graph, or a block atom, or an extended proper
atom, then the essence X of X is either 3-connected, or a cycle.

Proof. By Lemma 5.1, X̄ is connected. If X has an articulation, then either X
contains a block part, or X is a non-trivial semistar. By Lemma 5.1 X has an
atom, a contradiction. Hence, X is 2-connected. Let u be the vertex of minimum
degree in X. If deg(u) ≤ 1, then X is K1, or K2, which are 3-connected. If
deg(u) = 2, then u is an inner vertex of a maximal induced path P . Either
the end-vertices of P are of degree ≥ 3, or they are both of degree two. In the
first case, P is a proper atom, a contradiction. In the second case X is a cycle.
Finally, if deg(u) ≥ 3, then every 2-cut is essential. If X contains a non-trivial
2-cut, then by Lemma 5.1 X contains a proper part and therefore also an atom,
a contradiction. Thus, X has no 2-cut, and consequently, it is 3-connected.

Corollary 5.4. For any connected graph X the following statements hold true:

(i) if X is primitive, then X is a cycle, or X is simple and 3-connected,

(ii) if X is a block atom in a connected graph, then X is a cycle, or X is simple
and 3-connected with at least two vertices,

(iii) if X is an extended proper atom of a connected graph, then X is a cycle,
or X is simple and 3-connected with at least four vertices.

Moreover, in each of the three cases either X = X, or X arises from X by
attaching single semiedges to some vertices of X.

Proof. Assume the essence X is not a cycle. By Lemma 5.3 X is 3-connected.
The only non-simple 3-connected graphs are D2, D3 and S1. By definitions these
cannot be subgraphs of the essence of considered graphs. Further, K1 cannot be
the essence of a block part, and neither K1 nor K2 can be the essence of a proper
part.

88

One may ask, whether a graph satisfying the necessary conditions from Col-
lorary 5.4 is isomorphic to a primitive graph, block atom or to a proper atom.
The answer is positive.

If X is a cycle, or X is simple 3-connected, then it contains no parts, and
therefore is primitive.

Assume now that X is a cycle, or simple 3-connected with at least two vertices.
We construct a new graph first by taking two copies X1 and X2 of X. Choose
vi ∈ V (Xi), i = 1, 2, and form Y by identifying v1 and v2 in the disjoint union
X1 ∪X2. Clearly Y = A ∪B, where A ∼= X1 and B ∼= X2 are block atoms of Y .

Cyclic extended proper atoms isomorphic Cn are obtained from path-like
proper atoms with n vertices. They appear in a graph obtained from a sim-
ple 3-connected graph Y with at least 4 vertices by subdivision of an edge of Y
with n− 2 vertices.

Let X be simple 3-connected with at least 4 vertices. Take to copies Xi,
i = 1, 2 and form X ′

i = Xi − ei, where ei ∈ E(Xi). Let ui, vi be vertices incident
ei. Form Y by identifying u1 with u2 and v1 with v2, in the disjoint union X ′

1∪X ′
2.

Then Y = A ∪ B, A ∼= X ′
i
∼= B, i = 1, 2, are proper atoms whose extensions are

isomorphic to X.
Corollary 5.5. The essence of a proper atom in a graph X is either 2-connected,
or a path where the internal vertices are of degree two in X and the end-vertices
are of degree at least three in X.
Proof. By Corollary 5.4(iii) an extended proper atom is either a cycle of length
≥ 3, or a 3-connected graph with at least 4 vertices. Clearly, an edge deletion
cannot decrease the connectivity by more than one. Hence A is 2-connected in
the latter case. If A+ is a cycle of length k ≥ 3, then the essence Ā is a path of
length k − 1. By definition of a proper atom each of the end-vertices is incident
to at least 3 ordinary edges.

The following important lemma states that atoms can overlap only in their
boundaries. Among other it guaranties that the following reduction process is
correctly determined.
Lemma 5.6. Let A and B be two distinct atoms in a connected graph. Then
V (A ∩B) = ∂A ∩ ∂B, in particular Å ∩ B̊ = ∅.
Proof. Assume, to the contrary, that there exists a vertex w ∈ V (Å) ∩ V (B).
If V (B) ⊆ V (A), then by minimality B = A, a contradiction. Hence, there
exists a vertex z of B, z /∈ V (A). By Lemma 5.3, B is essentially 2-connected,
or essentially a path. Since B is connected, there exists a path joining z to w
intersecting ∂A. Hence |B| ≥ 3, and consequently, either B is a block atom, or a
proper atom.

Assume B̄ is 2-connected. Then there is a cycle C ⊆ B containing both w
and z. It follows that |∂A| = 2, and both vertices of ∂A are contained in C. It
follows that ∂A is an essential 2-cut separating A∩B. Hence A∩B ⊆ A contains
a proper part, implying A = B, a contradiction.

Let B̄ be a path. All the internal vertices of B̄ are of degree 2 and the
vertices in ∂A are of degree > 2. It follows B̊ ⊆ Å, and consequently, B ⊆ A, a
contradiction to existence of z ∈ V (B) \ V (A).

We proved V (Å)∩V (B) = ∅. By symmetry V (B̊)∩V (A) = ∅, as well. Hence
V (A) ∩ V (B) = ∂A ∩ ∂B, and we are done.

89

Action of the automorphism group on atoms. We observe that atoms
behave well with respect to the action of the automorphism group, making it
possible to replace them by edges, while preserving some information about the
automorphism group of the graph.

Lemma 5.7. Let A be an atom and let g ∈ Aut(X). Then the following hold:

• We have g(A) ∼= A, g(∂A) = ∂g(A), and g(Å) = g(A)˚ .

• If g(A) ̸= A, then g(Å) ∩ Å = ∅ and g(A) ∩ A = ∂g(A) ∩ ∂A.

Proof. The statement follows from Lemma 5.6 and from the fact that an auto-
morphism takes an atom onto an atom.

An atom A of X is symmetric if Aut(A) is transitive on ∂A, otherwise A is
asymmetric.

5.3.3 Reduction
For a graph X, the reduction produces a series of graphs X = X0, . . . , Xr. To
construct the graph Xi+1 from Xi, we first find the collection of all atoms A =
A(Xi) of Xi. To the isomorphism class of each A, we assign one new color not
yet used in the graphs X0, . . . , Xi, so that the coloring is injective.

Elementary reduction. An elementary reduction is performed as follows. Ev-
ery atom A with ∂A = {u} is replaced by a semiedge eA of the assigned color
incident to the unique vertex u ∈ ∂A and every atom A with ∂A = {u, v} is re-
placed by an ordinary edge eA of the assigned color incident to both u, v ∈ ∂A. If
A is symmetric, the edge eA is unoriented. If A is asymmetric with ∂A = {u, v},
we choose an arbitrary orientation of eA, say (u, v). By the assumption u and v
belong to different orbits in the action of Aut(Xi). If B is an atom in the same
orbit as A, the edge eB gets orientation (ψ(u), ψ(v)), for ψ ∈ Aut(Xi).

According to Lemma 5.6, the replaced interiors of the atoms are pairwise
disjoint, so the reduction is well-defined, and the number of edges decreases in

X0

red.

X
R

Figure 5.2: On the left, the graph X0 has three isomorphism classes of atoms, one
of each type. We reduce X0 to XR which is an eight cycle with single semiedges,
with four black symmetric edges replacing the dipoles, four gray undirected edges
replacing the block atoms, and four white directed edges replacing the proper
atoms.

90

each step. By applying the elementary reductions repeatedly we obtain, after
r steps, a primitive graph Xr. For a given graph X, we denote by XR = Xr

the result of applying the reduction process to X. A final reduction step is
demonstrated on Figure 5.2.

Expansions of edges. Consider the reductions series X = X0, . . . , Xr. For an
edge e ∈ E(Xi), for i > 0, let Ae be either the atom of Xi−1 which reduces to e, or
Ae is the subgraph induced by e if e ∈ E(Xi−1). The expansion A∗

e of e ∈ E(Xi)
is the unique subgraph of X = X0 which reduces to e after i steps. Observe that
for all i = 1, . . . , r, we have V (Xi) ⊆ V (Xi−1) and ιi(e) = ∂Ae = ∂A∗

e, where ιi is
the incidence function of Xi.

Reduction epimorphism. We investigate how Aut(Xi) and Aut(Xi+1) are
related. We define a mapping φi : Aut(Xi) → Aut(Xi+1) as follows. For g ∈
Aut(Xi), if g(Ae) = Af , then we set φi(g)(e) = f , and for u ∈ V (Xi+1), we set
φi(g)(u) = g(u). Recall that V (Xi+1) ⊆ V (Xi) is a union of orbits of Aut(Xi).

Lemma 5.8. The mapping φi : Aut(Xi)→ Aut(Xi+1) is a group epimophism.

Proof. For g, h ∈ Aut(Xi), we have

φi(gh)(eA) = egh(A) = eg(h(A)) = φi(g)(eh(A)) = φi(g)φi(h)(eA).

Similarly,
φi(gh)(u) = gh(u) = g(h(u)) = φi(g)φi(h)(u).

Hence, φi is a group homomorphism.
We show that φi is surjective. For g′ ∈ Aut(Xi+1), we want to extend g′ to

g ∈ Aut(Xi) such that φi(g) = g′. If u ∈ V (Xi+1) ⊆ V (Xi) we set g(u) = g′(u).
Let e ∈ E(Xi+1) be an edge. If e ∈ E(Xi)∩E(Xi+1), we set g(e) = g′(e). Suppose
that e = eA, for some atom A of Xi. If f = g′(e), then f is an edge of the same
color and the same type as e. Hence, f expands to an atom Af

∼= Ae = A. The
automorphism g′ prescribes the action of g on the boundary ∂A. We need to
show that it is possible to extend the action of g′ to Å consistently. The proof
splits depending on symmetry type of A.

• A is a star atom or a block atom. Then edges e and f = g′(e) are
semiedges, incident to articulations u and v = g′(u). We define g↾Åe

to
be a ∂-isomorphism Ae → Af .

• A is an asymmetric proper atom or an asymmetric dipole. By the definition,
the orientations of e and f = g′(e) is consistent with respect to g′. Since
Åe
∼= Åf , we define g↾Åe

to be an orientation-preserving ∂-isomorphism
Ae → Af .

• A is a symmetric proper atom or a symmetric dipole. Let h : Ae → Af be
a ∂-isomorphism. If h maps ∂Ae consistently with g′, then we set g↾Åe

=
h↾Åe

. Otherwise, we set g↾Åe
= h↾Åe

◦ k, where k is an automorphism of Ae

swapping the two vertices in ∂Ae.

It follows that φi is an epimorphism.

91

By the “First isomorphism theorem”, Aut(Xi) is an extension of Ker(φi) by
Aut(Xi+1) and

Aut(Xi+1) ∼= Aut(Xi)/Ker(φi).
The following lemma gives a structural information on the kernel of φi.

Lemma 5.9. The kernel Ker(φi) is isomorphic to the direct product∏︂
e∈E(Xi+1)

Aut(Ae)(∂Ae).

Proof. For an atom A ∈ A(Xi), denote by KA the point-wise stabilizer of X \ Å
in Ker(φi) ≤ Aut(Xi). Clearly, KA

∼= Aut(A)(∂A). According to Lemma 5.6,
the interiors of any two distinct atoms are pairwise disjoint. It follows that
KA ∩ ⟨KB : B ̸= A,B ∈ A(Xi)⟩ = id, and all KA are normal subgroups. Hence,

Ker(φi) =
∏︂

A∈A(Xi)
KA
∼=

∏︂
A∈A(Xi)

Aut(A)(∂A) ∼=
∏︂

e∈E(Xi+1)
Aut(Ae)(∂Ae).

We say that an atom A with ∂A = {u, v} is centrally symmetric if there
exists an automorphism h ∈ Aut(A)∂A such that h(u) = v, h(v) = u, h2 = id,
and h centralizes Aut(A)(∂A). Note that all star and block atoms are centrally
symmetric. Also, every symmetric dipole is centrally symmetric. Moreover, if
each symmetric proper atom is centrally symmetric, then the following theorem
hold.

Theorem 5.10. Let X0, . . . , Xr be reduction series of a graph X. If every sym-
metric proper atom of Xi, is centrally symmetric, for i < r, then

Aut(Xi) ∼=
⎛⎝ ∏︂

e∈E(Xi+1)
Aut(Ae)(∂Ae)

⎞⎠ ⋊ Aut(Xi+1)

is the inhomogeneous wreath product defined by the action of the group Aut(Xi+1)
on E(Xi+1).

Proof. For simplicity, we denote Gi = Aut(Xi) and Ki = Ker(φi). To prove the
theorem, we first find a subgroup H of Gi such that Gi = KiH, Ki ∩H = {id},
and H ∼= Aut(Xi+1).

The idea of the proof is as follows. We form a sequence of graphs Xi+1 =
Y0, . . . , Ys = Xi, where s is the number of all edge-orbits of Gi+1 and Yj is
obtained from Yj−1 by expanding all the edges of one edge-orbit into atoms.
First, we set H0 = Gi+1. For j > 0, let O = [o]Gi+1 be the jth edge-orbit of Gi+1,
where o ∈ E(Xi+1). For g′ ∈ Gi+1, we find an extension g ∈ Aut(Yj) such that
g(Ae) = Af if and only if g′(e) = f for all e, f ∈ O, for j = 0, 1, . . . , s. The set
Hj = {g : g′ ∈ Gi+1} is then a subgroup of Aut(Yj) isomorphic to Gi+1. It is easy
to see that Hj ∩Ki = {id}, for j = 0, 1, . . . , s. Finally, we put H = Hs.

We describe the outlined construction of Hj, for every fixed j > 0. Assume
that we already constructed the groups H0, . . . , Hj−1. Let O = [o]Gi+1 be the
jth edge-orbit of Gi+1, as above. To construct Hj, we distinguish several cases
according to the type of Ao.

92

• Case 1: The atom Ao is a star or a block atom. n this case, all the edges in
O are semiedges. For e ∈ O, let ue be the articulation such that ∂Ae = {ue}.
Choose arbitrarily ∂-isomorphisms so,e from Ao to Ae, and put so,o = id and
se,f = so,fs

−1
o,e. If g′(e) = f , we set g↾Ae̊

= se,f ↾Ae̊

. Since

se,c = sf,cse,f , ∀e, f, c ∈ O, (5.1)

the composition of the extensions g1 and g2 of two automorphisms g′
1 and

g′
2 is defined on the interiors of all {Ae : e ∈ O} exactly as the extension of
g′

2g
′
1. Therefore the extensions form a group.

• Case 2: The atom Ao is an asymmetric proper atom or dipole. All the
edges in the orbit O are oriented consistently with the action of Gi+1, and
the end-vertices form two orbits. For e ∈ O, let ι(e) = {ue, ve}, where
{ue : e ∈ O} and {ve : e ∈ O} are the two vertex-orbits. Further, the
construction proceeds as in Case 1, in addition, since Ao is asymmetric, we
have that so,e(uo) = ue and so,e(vo) = ve.

• Case 3: The atom Ao is a symmetric proper atom or a dipole. All the edges
in the orbit O are standard edges, and their end-vertices form one orbit.
For e ∈ O, let ι(ei) = {ue, ve}, where {ue, ve : e ∈ O} is the vertex-orbit.
Further, for e ∈ O we arbitrarily choose one ∂-isomorphism so,e from Ao

to Ae such that so,e(uo) = ue and so,e(vo) = ve, and set se,f = so,fs
−1
o,e, for

e, f ∈ O.
By the assumptions, there is a central involution to ∈ Aut(Ao)∂Ao which ex-
changes uo and vo. Then to determines a central involution te ∈ Aut(Ae)∂Ae

by conjugation te = so,etos
−1
o,e. It follows that

tf = se,f tes
−1
e,f , and consequently se,f te = tfse,f , ∀e, f ∈ O.

(5.2)
We put ŝe,f = se,f te = tfse,f which is an isomorphism mapping Ae to
Af such that ŝe,f (ue) = vf and ŝe,f (ve) = uf . In the extension, we put
g↾Ae̊

= se,f ↾Ae̊

if g′(ue) = uf , and g↾Ae̊
= ŝe,f ↾Ae̊

if g′(ue) = vf .

Besides (5.1), we get the following additional identities:

ŝe,c = sf,cŝe,f , ŝe,c = ŝf,cse,f , and se,c = ŝf,cŝe,f , ∀e, f, c ∈ O.
(5.3)

Ao

Ae

Af

uo

ue

uf

so,o = id

so,e

so,f

Ao

Ae

uo vo

ue ve

to

so,e ŝo,e

Figure 5.3: Case 1 is demonstrated on the left, the respective block atoms are
Ao, Ae and Af . Case 3 is demonstrated on the right, the additional involution
te ∈ Aut(Ae)∂Ae transposes ue and ve.

93

Indeed, we have:

sf,cŝe,f = sf,cse,f te = se,cte = ŝe,c,

ŝf,cse,f = sf,ctfse,f = sf,cse,f te = se,cte = ŝe,c,

ŝf,cŝe,f = tc(sf,cse,f)te = tcse,cte = tctcse,c = se,c.

It follows that the composition of the extensions g2g1 is correctly defined,
and it coincides with the extension of g′

2g
′
1.

From the construction of H it follows that H ∼= Aut(Xi+1) and H∩Ki = {id}.
Therefore, Gi = KiH is a semidirect product. Note that the complement H of
Ker(φi), in the statement, is not uniquely determined. The group H depends on
the choice of the isomorphism so,e and of the involution to.

By Lemma 5.9 we have that Ki is the internal direct product

Ki =
∏︂

e∈E(Xi+1)
KAe .

Let θ : H → Gi+1 be the natural isomorphism φi ↾H induced by the epimorphism
φi : Gi → Gi+1. By Theorem 1.5, in order to finish the proof we need to verify
that the action of H by conjugation on Ki in the semidirect product KiH satisfies
the following: For every e ∈ E(Xi+1), h, h1, h2 ∈ H,

(i) (KAe)h = KAθ(h)(e) ,

(ii) for every g ∈ KAe we have gh1 = gh2 if and only if θ(h1)(e) = θ(h2)(e).

Item (i) is trivially satisfied, since each h is an extension of an automorphism
of Xi+1. For g ∈ KAe denote by ge the restriction of g onto Ae. For h ∈ H taking
Ae → Af , denote he the restriction of h to Ae. Let se,f be the ∂-isomorphism
mapping Ae → Af , chosen in the construction of H. Then θ(h)(e) = f . Let
ue ∈ ι(e). If se,f (ue) = h(ue), then

hgh−1
↾Af

= hegeh
−1
f = se,fges

−1
e,f .

If se,f (ue) ̸= h(ue), then

hgh−1
↾Af

= tfse,fges
−1
e,f tf = se,f tegetes

−1
e,f = se,fges

−1
e,f .

The second equality follows from (5.2) and the last equality holds since te ∈
Aut(Ae)∂Ae is a central involution. In each case the result does not depend on
the choice of h ∈ {k ∈ H : θ(k)(e) = f}.

5.3.4 Recursive construction of automorphism groups
The reduction can be used to describe inductively the automorphism groups of
graphs in terms of the automorphism groups of their 3-connected components.
Let θi = φi−1 ◦ · · · ◦ φ0 denote the epimorphism Aut(X0) → Aut(Xi), for i =
1, . . . , r.

94

Lemma 5.11. The kernel Ker(θi) is isomorphic to the direct product∏︂
e∈E(Xi)

Aut(A∗
e)(∂A∗

e).

Proof. The statement follows by repeatedly applying Lemma 5.9.

Theorem 5.12. Let X0, . . . , Xr be the reduction series of a graph X. If every
symmetric proper atom of X0, . . . , Xi is centrally symmetric, for i < r, then

Aut(X) ∼=
⎛⎝ ∏︂

e∈E(Xi+1)
Aut(A∗

e)(∂A∗
e)

⎞⎠ ⋊ Aut(Xi+1)

is the inhomogeneous wreath product defined by the action of the group Aut(Xi+1)
on E(Xi+1).

Proof. By Theorem 5.10 the statement holds for i = 0. If i > 0, we shall use
Theorem 5.10 repeatedly, to conclude that Aut(X) contains an isomorphic copy
of Aut(Xi+1) forming a complement of Ker(θi+1).

Theorem 5.13. Let X0, . . . , Xr be the reduction series of a graph X. If every
symmetric proper atom of X0, . . . , Xi is centrally symmetric, for i < r, and f ∈
E(Xi+1), then

Aut(A∗
f)(∂A∗

f
) ∼=

⎛⎝ ∏︂
e∈E(Af)

Aut(A∗
e)(∂A∗

e)

⎞⎠ ⋊ Aut(Af)(∂Af)

is the inhomogeneous wreath product defined by the action of Aut(Af)(∂Af) on
E(Af).

Proof. Observe that Aut(A∗
f)(∂A∗

f
) is embedded in Aut(X), and Aut(Af)(∂Af) is

embedded in Aut(Xi). Let {u, v} = ∂A = ∂A∗, where u is not necessarily
distinct from v. Now the statement follows from Theorem 5.12 by setting X = A∗

f

and Xi+1 = Af , with the two vertices u and v colored by different colors. The
coloring implies Aut(Xi+1) = Aut(Af)(∂Af) and Aut(X) = Aut(A∗

f)(∂A∗
f

). With
this identification in mind, the statement follows.

5.4 Point-orbits of spherical groups
In order to apply the results proved in Section 5.3 to a particular family F of
graphs one needs to analyze the structure of automorphism groups of 3-connected
graphs in F . Since we aim to derive a recursive characterisation of automorphism
groups of planar graphs, where the operations will be described in terms of partic-
ular inhomogoneous wreath products, one needs to understand the automorphism
groups of 3-connected planar graphs not just as abstract groups, but we need to
describe the actions as well. The analysis cannot be done in a purely group the-
oretical settings, although the final result is geometry free. A bridge between
3-connected planar graphs and geometry is established by the well known theo-
rems by Whitney [163], Steinitz [150] and Mani [122] stated in the next section.

95

In this section the main aim is to determine isomorphism classes of G-orbits for
each spherical group G.

A finite subgroup of the orthogonal group O(3,R) of 3× 3 orthogonal matri-
ces is called a spherical group. Classification of spherical groups is well known.
Abstractly, these groups include infinite families Zn, Dn, Zn × Z2, and Dn × Z2,
the symmetry groups of the platonic solids, namely, A5 × Z2, S4 × Z2, and S4,
and all the subgroups of these groups. Recall that every 3× 3 orthogonal matrix
is uniquely determined by its action on the sphere S2 = {x ∈ R3 : ∥x∥ = 1}.
Hence, there is a one-to-one correspondence between the elements of O(3) and
the isometries (motions) of S2. Up to isomorphism, there are 14 possible types
of spherical groups identified by the Conway’s notation [43]; see the left collumn
of Table 5.1.

There are three basic types of isometries of S2, namely rotations, reflections,
and the antipodal involution, and every isometry is a composition of these. A
rotation is an orientation-preserving isometry which fixes a pair of antipodal
points, a reflection is an orienation-reversing isometry fixing a great circle, and
the antipodal involution is an orientation-reversing isomotery swapping the pairs
of antipodal points.

Point-orbits. Let g be an isometry of S with a fixed point. If g is orientation-
preserving, then g is a rotation, if g is orientation-reversing, then g is a reflection.
It follows that a point-stabilizer in a spherical group is either cyclic or a dihedral
group.

For a spherical group G and a point x of the sphere, there are four types orbits
O = [x]G according to the structure of the point-stabilizers:

• regular : |O| = |G|, the stabilizer of each point O is trivial,

• regular-reflexive: |O| = |G|/2 and the stabilizer of each point in O is gen-
erated by a unique reflection,

• singular : |O| = |G|/m, m ≥ 2, and the stabilizer of each point in O is
generated by a rotation of order m,

• singular-reflexive: |O| = |G|/2m, m ≥ 2, and the stabilizer of each point in
O is generated by a rotation and reflection generating the dihedral group
of order 2m.

With each spherical group G there is an associated quotient orbifold O =
S/G whose points represent orbits of the action. In what follows, we denote by
ω : S → O the natural projection x ↦→ [x]G. Topologically, O is a either a sphere,
or a disk, or the projective plane. The interior points of O correspond to regular
orbits and to singular orbits. The boundary point of O (if the quotient orbifold
is topologically a disk) represents a regular-reflexive, or a singular-reflexive orbit.
By Riemann-Hurwitz equation, there can be only a finite number of singular and
singular-reflexive orbits giving rise to finitely many branch points onO. Moreover,
the number of branch points is bounded by three, and all possible sequences of
branch indices can be read from Table 5.1. A branch-point x is of index m > 1,
if ω−1(x) is a singular orbit of size |G|/m, or if ω−1(x) is a reflexive singular orbit
of size |G|/2m. The set of all branch points will be denoted by B.

96

Regular orbits. For regular orbits, Lemma 1.3 implies the following.

Lemma 5.14. All regular point-orbits in an action of G on S2 are isomorphic.

Regular-reflexive orbits. If the set of regular-reflexive orbits is non-empty,
then O is topologically a disk and all the regular-reflexive orbits are projected on
the boundary. From the classification of spherical groups, see Table 5.1 Collumn
“Action”, it follows that |B ∩ ∂O| ≤ 3 (for each action the number of singular
reflexive points is equal to the number of integers following the star).

Let O1 and O2 be two regular-reflexive orbits which are projected by ω to x̄
and ȳ in ∂O, respectively. There are several cases.

• Case 1 : The points x̄ and ȳ are in the same connected component of ∂O\B.

• Case 2 : The points x̄ and ȳ are in different connected components of ∂O\B
incident to a branch point of an odd index.

• Case 3 : The points x̄ and ȳ are in different connected components of ∂O\B
and one of x̄, ȳ, is in a component separated by branch points of an even
index.

Lemma 5.15. In Cases 1 and 2, the regular-reflexive orbits O1 = ω−1(x̄) and
O2 = ω−1(ȳ) are isomorphic G-orbits.

Proof. In Case 1, there exists a path Q ⊆ ∂O joining x̄ and ȳ and avoiding the
branch points (if there are any). Then the |G|/2 lifts of Q give a matching of O1
and O2, determining the isomorphism.

Consider the induced action of G on the connected components of ω−1(∂O\B),
which we will call segments. For x ∈ S2, let sx be the segment containing the
point x. Then two orbits [x]G and [y]G are G-isomorphic if and only if [sx]G
and [sy]G are G-isomorphic. This observation reduces the identification of the
isomorphism classes to the problem of determining isomorphism classes of orbits
of the action of G on the segments. By Lemma 1.2, [sx]G and [sy]G are isomorphic
if and only if Gsx and Gsy are conjugate in G. We may assume that sx and sy

are incident to b ∈ ω−1(b̄), for some b̄ ∈ B. Since the action of G is transitive
on ω−1(b̄), the groups Gsx and Gsy are conjugate in G if they are conjugate in
Gb
∼= Dm, where m is the branch-index of b̄. Using Lemma 1.4, this concludes

the proof for the Case 2.

Lemma 5.16. The regular-reflexive orbits O1 = ω−1(x̄) and O2 = ω−1(ȳ) are
non-isomorphic in the Case 3.

Proof. Let b1 and b2 be the branch points of even index separating the segment
containing x̄. By the classification of spherical groups, G is one of the groups
*432, *22n, and *nn (n is even).

First, we deal with the case *nn. The boundary of O lifts into an embedding
D2n of a 2n-dipole on the sphere, where the two branch points of index n lift to
the two 2n-valent vertices of the dipole, respectively. Without a loss of generality,
we can assume that the vertices of the dipole correspond to the north and south
pole of the sphere. The embedding determines a cyclic ordering e1, e2, . . . , e2n

97

of the edges of D2n. We may assume that in this ordering, every odd edge ei

contains the unique preimage xi of x̄ and every even edge ej contains the unique
preimage yj of ȳ. Since Dn acts as a group isometries fixing the north- and
south-pole of the sphere, the great circle forming the equator C is preserved.
The action gives two non-isomorphic point-orbits C ∩ {e2i−1; i = 1, 2, . . . , n} and
C ∩ {e2i, i = 1, 2, . . . , n}, see Lemma 1.4.

Now we deal with the case *22n (n is even). Similarly as above, O lifts to a
triangulation of the sphere determined by a 2n-sided bi-pyramid with the two 2n-
valent vertices located at the north and south pole. The embedding determines
a natural cyclic ordering e1, e2, . . . , e2n of the edges emanating from the vertex in
the north pole and the cyclic ordering e′

1, e
′
2, . . . , e

′
2n at the south pole, where ei

meets with e′
i at the equator. Similarly, as in the previous paragraph, every odd

edge consists of a unique preimage of x̄ and every even edge consists of unique
a preimage of ȳ. We may assume that in this ordering, the odd edges ei and e′

i

contain the unique preimages xi and x′
i of x̄, respectively, and the even edges ej

and e′
j contain the preimages yj and y′

j of ȳ. The group G ∼= Dn ×C2 contains a
normal subgroup Dn acting on the 2n vertices on the equator splitting this set on
two non-isomorphic orbits as in in the previous case. The complementary central
involution swaps the north- and south-pole, as well as xi and x′

i, and yj and y′
j,

but fixes the equator point-wise.
Case *432. The lift of the respective orbifold gives a barycentric subdivision

of the cube. Choose a triangle in the barycentric subdivision. The stabilizer
of one side in the automorphism group of cube is generated by an involution.
Thus the three sides give three involutions a, b, c, where G = ⟨a, b, c⟩ ≤ S8 is
the automorphism group of the cube. Let a be the stabilzer of the side joining
the center of edge to the center of a face of the cube. Then a is a product
of four disjoint transpositions, while both b and c are products of two disjoint
transpositions. Recall that the stabilizer of a vertex in a group of automorphism
of a polyhedron is faithfull on the adjacent vertices. The involutions b and c
generate the stabilizer of a vertex isomorphic to D3, hence they are conjugate. The
involution a is not a conjugate of b, since a and b have different cycle structure.
By Lemma 1.2 we are done.

Singular and singular-reflexive orbits. The isomorphism of singular and
singular-reflexive orbits will be discussed for each spherical group separately.
Since the stabilizers in isomorphic orbits have the same size, it is sufficient to
investigate the following spherical groups: *332, *22n, 332, 22n, *nn, and nn.

Lemma 5.17. Let G be a spherical group of type *332 or 332. Then the two
orbits of size 4 are isomorphic.

Proof. The two orbits of size 4 are represented by the vertices and centers of faces
of the spherical tetrahedron. Observe that antipodal point to a point representing
a vertex of the tetrahedron is the center of the opposite face. This defines a
matching between the vertices and the centers of faces of the tetrahedron, giving
the isomorphism between the two singular orbits of size 4.

Lemma 5.18. Let G be a spherical group of type 22n or *22n. Then the following
statements hold:

98

• If n = 2, then the three orbits of order 2 are pairwise non-isomorphic.

• If n ≥ 3 and n is odd, then the two orbits of order n are isomorphic.

• If n ≥ 4 and n is even, then the two orbits of order n are non-isomorphic.

Proof. Let G be of type 22n. Construct a geodesic triangle with vertices being
the three branch points. Then the triangle lifts to the 2n-sided by-pyramid, where
the orbits O1 and O2 form the vertices of the cycle C of length 2n lying on the
equator, thus the opposite points of C are antipodal. Now the statement follows
from Lemma 1.4 if n > 2. If n = 2, then the by-piramid is the octahedron, where
the three orbits of size two are formed by the three pairs of antipodal vertices.
The stabilizers of these orbits correspond to the three non-trivial subgroups of
G ∼= Z2

2. Since Z2
2 is abelian, all conjugacy classes of subgroups are trivial, and

the orbits are non-isomorphic by Lemma 1.2.
Let G be of type ∗22n. Then the orbifold O lifts to the 2n-sided by-pyramid,

where the orbits O1 and O2 form the vertices of the cycle C of length 2n lying
on the equator, thus the opposite points of C are antipodal. Observe that G acts
on C as the dihedral group Dn. The statement follows from Lemma 1.4 if n > 2.
If n = 2, then the by-piramid is the octahedron, where the three orbits of size
two are formed by the three pairs of antipodal vertices. The stabilizers of these
orbits correspond to three distinct subgroups of G ∼= Z3

2. Since Z3
2 is abelian, all

conjugacy classes of subgroups are trivial, and the orbits are non-isomorphic by
Lemma 1.2.

Lemma 5.19. Let G be a spherical group of type *nn or of type nn. Then the
two singular orbits of order 1 are isomorphic.

Proof. Follows trivially from Lemma 1.3

We use the following presentations of the abstract groups isomorphic to the
spherical groups:

• *2km: ⟨t1, t2, t3 | t21 = t22 = t23 = (t1t3)k = (t1t2)m = (t2t3)2 = 1⟩, k ≤ m,

• 2km: ⟨r1, r2 | rk
1 = rm

2 = (r1r2)2 = 1⟩, k ≤ m,

• 2*n: ⟨r, t | r2n = t2 = (rt)2 = 1⟩,

• 3*2: ⟨r, t, z | r3 = t2 = (rt)3 = z2 = [z, r] = [z, t] = 1⟩,

• *nn: ⟨t1, t2 | t21 = t22 = (t1t2)n = 1⟩,

• nn: ⟨r | rn = 1⟩,

• n×, n even: ⟨r | rn = 1⟩,

• n*: ⟨r, t | rn = t2 = [r, t] = 1⟩.

Using Lemmas 5.14–5.19 and an observation that in the action of an abelian
group the conjugacy classes of subgroups are trivial we get the following theorem.

99

Action

*532

*432

*332

*22n

*22n

532

432

332

22n

22n

3*2

2*n

*nn

*nn

nn

n×

n*

G

A5 × C2

S4 × C2

S4

Dn × C2, n ≥ 3, odd

Dn × C2, n ≥ 2, even

A5

S4

A4

Dn, n ≥ 3, odd

Dn, n ≥ 2, even

A4 × C2

D2n, n ≥ 2

Dn, n ≥ 3, odd

Dn, n ≥ 2, even

Cn, n ≥ 2

C2n, n ≥ 1

Cn × C2, n ≥ 2

|G|

120

48

24

4n

4n

60

24

12

2n

2n

24

4n

2n

2n

n

2n

2n

Point-orbits

120∞, 60∞, 301, 201, 121

48∞, 2 · 24∞, 121, 81, 61

24∞, 12∞, 61, 42

(4n)∞, 2 · (2n)∞, n2, 21

(4n)∞, 3 · (2n)∞, 2 · n1, 21

60∞, 301, 201, 121

24∞, 121, 81, 61

12∞, 61, 42

(2n)∞, n2, 21

(2n)∞, 2 · n1, 21

24∞, 12∞, 81, 61

(4n)∞, (2n)∞, (2n)1, 21

(2n)∞, n∞, 12

(2n)∞, 2 · n∞, 12

n∞, 12

(2n)∞, 21

(2n)∞, n∞, 21

Stabilizers

1, 〈t1〉, 〈t2, t3〉, 〈t1, t3〉, 〈t1, t2〉

1, 〈t1〉, 〈t2〉, 〈t2, t3〉, 〈t1, t3〉, 〈t1, t2〉

1, 〈t1〉, 〈t2, t3〉, 〈t1, t2〉

1, 〈t1〉, 〈t2〉, 〈t2, t3〉, 〈t1, t2〉

1, 〈t1〉, 〈t2〉, 〈t3〉, 〈t2, t3〉, 〈t1, t3〉, 〈t1, t2〉

1, 〈r1〉, 〈r2〉, 〈r1, r2〉

1, 〈r1〉, 〈r2〉, 〈r1, r2〉

1, 〈r1〉, 〈r2〉

1, 〈r2〉, 〈r1, r2〉

1, 〈r1〉, 〈r2〉, 〈r1, r2〉

1, 〈z〉, 〈r〉, 〈z, t〉

1, 〈rn/2〉, 〈t〉, 〈r2, t〉

1, 〈t1〉, 〈t1, t2〉

1, 〈t1〉, 〈t2〉, 〈t1, t2〉

1, 〈r〉

1, 〈r2〉

1, 〈t〉, 〈r, t〉

Table 5.1: For each (parametrized) spherical group G, the first entry defines
the action on the sphere following the Conway’s [43] notation, the second entry
determines G as an abstract group, the third entry gives the order of G. The
fourth entry gives the numbers of isomorphism classes of point-orbits of G. By
c · ab, we denote that there are c isomorphism classes of point-orbits of size a
and each isomorphism class consists of b orbits. The fifth entry gives for each
isomorphism class of orbits its representation in terms of a coset space of G; see
presentations of the spherical groups.

Theorem 5.20. The isomorphism classes of point-orbits of spherical groups are
enumerated in the fourth column of Table 5.1. Moreover, given spherical group
G, representatives of isomorphism classes of G-orbits are determined in terms of
stabilizers in Column 5 of Table 5.1, where the stabilizers are described by means
of the above presentations. Each orbit is isomorphic to the G-set formed by the
set of left cosets of the stabilizer with G acting by left multiplication.

Observe that the above description of the vertex-orbits does not require direct
reference to spherical groups.

Constructions of polyhedra. In Figure 5.4, for each spherical group G the
quotient orbifold O = S2/G is depicted together with a graph X embedded in
O. Each embedding lifts along the projection S2 → O onto the 2-skeleton of a
(spherical) polyhedron P . The polyhedron P satisfies the following properties:

• G is a subgroup of Aut(P), and

• for every isomorphism class of point-orbits of G there exists a vertex-orbit
in P representing the class.

In each quotient graph X embedded in O, see Figure 5.4, the vertices are
labeled by subgroups of G. For each vertex v the associated subgroup determines
(up to conjugacy in G) the stabilizers of its lifts. The polyhedrality of the lifted
maps can be checked in each case directly. For instance, it is not difficult to

100

2 m

k

〈t2, t3〉 〈t1, t2〉

〈t1, t3〉

〈t2〉

〈t1〉
〈t3〉 1

×

×

×2

m

k

〈r1, r2〉

〈r2〉

〈r1〉

1

×

×

n

2

1

〈r
n

2 〉

〈r2, t〉

〈t〉

×

×

2

3

1

〈r〉

〈z, t〉

〈z〉

×

×

n

n

〈t1, t2〉

〈t1, t2〉

〈t2〉〈t1〉
1

×

×

n

n

1

〈r〉

1

〈r〉

a

a

×n 1

1

1

1

〈r2〉

×
n 〈r, t〉

〈t〉 〈t〉

1

*2km 2km

2*n 3*2

*nn nn

n× n*

Figure 5.4: Quotient orbifolds and construction of polyhedra containing all types
of orbits. For each spherical group, the left figure displays the respective quotient
orbifold S2/G. The associated right figure shows a map on S2/G, whose lift to
S2 is a 2-skeleton of a polyhedron satisfying the required properties.

101

identify the lifted maps in case nn, see Figure 5.4. These are the 2-skeletons
of 2n-sided bipyramids. In case ∗2km the lifted maps arise by a local operation
applied to the barycentric subdivision of the 2-skeletons of the five Platonic solids
and to cycles (if one of the k and m is equal 2).

5.5 Automorphism groups of 3-connected pla-
nar graphs

A graph is planar if it admits an embedding into the Euclidean plane. Similarly,
a graph is spherical if and only if it admits an embedding into the sphere. A
correspondence between a spherical and plane embeddings of a graph is via the
stereographic projection. Thus a graph is planar if and only if it is spherical.
A combinatorial characterization of planarity gives the well-known Kuratowski
theorem. Both the definition of planarity and Kuratowski theorem easily apply to
the graphs considered in this chapter, alternatively see [158, Chapter 11]. Recall
that 3-connected graphs with at least 4 vertices are simple.

In this section, we recall the classification of automorphism groups of 3-
connected planar graphs. The classification is based on Whitney’s theorem [163]
stating that a 3-connected planar graph has a unique embedding into the sphere,
and on Mani’s theorem [122] establishing that the unique embedding can be real-
ized on the sphere such that all automorphisms of the graph extend to isometries
of the underlying sphere.

Maps on surfaces. A mapM is a 2-cell decomposition of a compact connected
surface Σ. A map is usually defined by a 2-cell embedding of a connected graph
ε : X ↪→ Σ. The connectivity components of Σ \ ε(X) are called faces of M.
An automorphism of a map is an automorphism of the graph preserving the
incidences between the vertices, edges, and faces. If M is a spherical map, then
Aut(M) is one of the spherical groups and with the exception of paths and cycles,
it is a subgroup of Aut(X). As a consequence of Whitney’s theorem [163] we have
the following.

Theorem 5.21. Let M be the map given by the unique 2-cell embedding of a
3-connected graph X into the sphere. Then Aut(X) = Aut(M).

By Mani’s theorem [122], there exists a polyhedron P , whose 1-skeleton is
isomorphic to X, such that the group of isometries of P coincides with Aut(X).
Also, the polyhedron P can be placed in the interior of a sphere and projected
onto it, so that each isometry of P corresponds to an isometry of the sphere.
Therefore, every automorphism in Aut(X) can be viewed as an isometry of the
sphere. In particular, we have the following corollary.

Theorem 5.22. Let X be a 3-connected planar graph. Then Aut(X) is isomor-
phic to one of the spherical groups.

Note that Mani proved his theorem 3-connected planar graphs that are poly-
hedral. These graphs are exactly 3-connected planar graphs with at least four
vertices. Following the definitions, the 3-connected graphs with at most 3 vertices

102

are the dipoles D2, D3, the complete graphs K1, K2, K3 and the semistar S1. All
the six graphs are planar and their automorphism groups are spherical.

We recall some basic definitions from geometry [151, 133]. An automorphism
of a 3-connected planar graph G is called orientation preserving, if the respective
isometry preserves the global orientation of the sphere. It is called orientation
reversing if it changes the global orientation of the sphere. A subgroup of Aut(X)
is called orientation preserving if all its automorphisms are orientation preserv-
ing, and orientation reversing otherwise. Since the composition of orientations
reversing automorphisms is orientations preserving, every orientation reversing
subgroup contains an orientation preserving subgroup of index 2.

Vertex- and edge-stabilizers. Let X be a 3-connected planar graph and let
u ∈ V (X). Consider a spherical embedding of X, where the automorphisms of
X are realized as isometries. The stabilizer of u in Aut(X) is a subgroup of a
dihedral group and it has the following description in the language of isometries.
If Aut(X)u

∼= Zn, for n ≥ 3, it is generated by a rotation of order n that fixes
u and the antipodal point of the sphere, and fixing no other point of the sphere.
The antipodal point of the sphere may be another vertex or a center of a face. If
Aut(X)u

∼= Dn, for n ≥ 2, it consists of rotations fixing u and the antipodal point
of the sphere and reflections fixing a great circle passing through u and through
the antipodal point. Each reflection always fixes either a center of some edge,
or another vertex. When Aut(X)u

∼= D1 ∼= Z2, it is generated either by a 180◦

rotation, or by a reflection.
Let e ∈ E(X). The stabilizer of e in Aut(X) is a subgroup of Z2

2. When
Aut(X)e

∼= Z2
2, it contains the following three non-trivial isometries. First, the

180◦ rotation around the center of e and the antipodal point of the sphere that
is a vertex, center of an edge, or center of an even face. Next, two reflections
perpendicular to each other which fix the center of e, the antipodal point of the
sphere. When Aut(X)e

∼= Z2, it is generated by only one of these three isometries.
We summarize the above discussion in the following lemma.

Lemma 5.23. Let X be a 3-connected planar graph, let u be a vertex of degree
n, and let e be an edge. Then Aut(X)u is isomorphic to a subgroup of Dn, and
Aut(X)e is isomorphic to a subgroup of Z2

2. Both Aut(X)u and Aut(X)e embedd
into a spherical group.

Stabilizers of atoms in planar graphs.

Lemma 5.24. Let A be an atom in a planar graph X.

(a) If A is a star atom, then Aut(A)∂A = Aut(A)(∂A) and it is isomorphic to a
direct product of symmetric groups.

(b) If A is a block atom, then Aut(A)∂A = Aut(A)(∂A) and it is isomorphic to
a subgroup of a dihedral group Dn, where n is the degree of the articulation
separating A.

(c) If A is a proper atom, then Aut(A)∂A and it is isomorphic to a subgroup of
Z2

2 and Aut(A)(∂A) is a subgroup of Z2.

103

u

A

Aut(A)(∂A)
∼= S2 × S3

Aut(A)∂A ∼= S2 × S3

u

A

Aut(A)(∂A)
∼= D6

Aut(A)∂A ∼= D6

u v

A

Aut(A)(∂A)
∼= C2

Aut(A)∂A ∼= C
2
2

u v

A

Aut(A)(∂A)
∼= S

2
2

Aut(A)∂A ∼= S
2
2 ⋊C2

Figure 5.5: An atom A together with its groups Aut(A)(∂A) and Aut(A)∂A. From
left to right, a star atom, a block atom, a proper atom, and a dipole.

(d) If A is a dipole, then Aut(A)(∂A) and it is isomorphic to a direct product of
symmetric groups. If A is symmetric, then Aut(A)∂A = Aut(A)(∂A) × Z2.
If A is asymmetric, then Aut(A)∂A = Aut(A)(∂A).

Proof. (a) Since |∂A| = 1, we have Aut(A)∂A = Aut(A)(∂A). Clearly, the group
Aut(A)(∂A) is a direct product of symmetric groups.

(b) Similarly as in Case (a), |∂A| = 1, and we have Aut(A)∂A = Aut(A)(∂A).
Set B = A. It follows that Aut(A)∂A ≤ Aut(B)∂B. By Corollary 5.4 (ii), either
B is a cycle, or a 3-connected planar graph. In the first case, Aut(B)∂B is a
subgroup of Z2, while in the second case, it is the stabilizer of a vertex in a 3-
connected planar graph which is by Lemma 5.23 a subgroup of Dn, where n is
the degree of the articulation separating A.

(c) Let A be a proper atom with ∂A = {u, v}. Let B = A, so Aut(A)∂A ≤
Aut(B)∂B and Aut(A)(∂A) ≤ Aut(B)(∂B). Clearly, Aut(B)∂B = Aut(B+)∂B+ ,
where B+ = B + uv. By Corollary 5.4, B+ is either a cycle, or a 3-connected
graph with at least four vertices. In the former case, Aut(B+) is a subgroup of Z2
and Aut(B+)(∂B+) is trivial. In the latter case, we claim that B+ is planar. First,
by the definition of a proper atom, B is a subgraph of a block C in a planar graph
X such that {u, v} is a 2-separation of C. It follows that X \ B̊ is a connected
plane graph, in particular, the boundary vertices u and v are connected by a path
in X \ B̊. Thus, in the induced embedding of B into the sphere the vertices u and
v appear in the boundary of the same face, i.e., B+ is planar. By Lemma 5.23,
Aut(B+)e of e = uv is isomorphic to a subgroup of Z2

2. It follows that Aut(A)∂A

is a subgroup of Z2
2 and Aut(A)(∂A) is a subgroup of Z2.

(d) Let {u, v} be the vertex set of the dipole A. If A is asymmetric, we have
Aut(A)∂A = Aut(A)(∂A) which is a direct product of symmetric groups. If A
is symmetric, there is an involution t ∈ Aut(A)∂A which swaps u with v and
fixes all the edges. Clearly, we have ⟨t⟩ ∩ Aut(A)(∂A) = {id} and t centralizes
Aut(A)(∂A).

Lemma 5.25. Every planar symmetric proper atom and symmetric dipole atom
is centrally symmetric.

Proof. Follows from the parts (c) and (d) of Lemma 5.24.

Automorphism groups of planar primitive graphs.

Lemma 5.26. The automorphism group Aut(X) of a planar primitive graph X
is isomorphic to a spherical group.

104

Proof. By Corollary 5.4 (i), the essence X of X is 3-connected, or an n-cycle.
If X is 3-connected, then Aut(X) is a spherical group by Theorem 5.22. If X
is an n-cycle, then Aut(X) is a subgroup of Dn. By Corollary 5.4, Aut(X) is a
subgroup of Aut(X). Since the family of spherical groups is closed under taking
subgroups, we are done.

5.6 Jordan-like characterization
In this section, we present and prove the main result of this chapter: a complete
recursive description of the automorphism groups of connected planar graphs.
Note that in combination with Theorem 1.10, this gives the description of the
automorphism groups of all planar graphs. In the first step, we determine in
Subsection 5.6.1 the abstract groups that can be realized as vertex-stabilizers of
planar graphs. In the second step, we determine in Subsection 5.6.2 how these
groups are composed with spherical groups.

5.6.1 Vertex-stabilizers of planar graphs
The aim of this section is to analyze the following class of abstract groups

Stab(PLANAR) = {G ∼= Aut(X)u : X ∈ PLANAR, u ∈ V (X)}

The following lemma relates Stab(PLANAR) to pointwise stabilizers of boundaries
of expanded atoms, allowing us to apply the theory developed in Section 5.3.

Lemma 5.27. The class Stab(PLANAR) = Fix(PLANAR), where

Fix(PLANAR) = {G ∼= Aut(X)(∂X) : X ∈ PLANAR, |E(XR)| = 1, ∂X = V (XR)}.

Proof. Let, G ∈ Fix(PLANAR) and let X be a graph certifying that. Let v ∈ ∂X.
If ∂X = {v}, then G ∼= Aut(X)(∂X) = Aut(X)v ∈ Stab(PLANAR). If ∂X =
{u, v}, then we form the graph Y by indentifying the vertex u with an end-vertex
of a path P , where |E(P)| > |E(X)|. Then G ∼= Aut(X)(∂X) ∼= Aut(Y)v ∈
Stab(PLANAR). Thus Fix(PLANAR) ⊆ Stab(PLANAR).

Let G ∈ Stab(PLANAR) and let X and v ∈ V (X) be a graph and a vertex
certifying that. Let Y be the graph formed by identifying v with an end-vertex
of a path P , where |E(P)| > |E(X)|. Now, the graph Y R is either a two-vertex
graph, or K1 with a single semiedge attached, depending on the parity of |E(P)|.
The latter case can be alsways ensured by suitably adjusting the parity of |E(P)|.
We have |E(Y R)| = 1 and G ∼= Aut(X)u

∼= Aut(Y)(∂Y) ∈ Fix(PLANAR). Thus
Stab(PLANAR) ⊆ Fix(PLANAR).

The next theorem gives a recursive characterization of Stab(PLANAR).

Theorem 5.28. The class Stab(PLANAR) = F , where F is defined inductively
as follows:

(a) {1} ∈ F .

(b) If G1, G2 ∈ F , then G1 ×G2 ∈ F .

105

(c) If G ∈ F , then G ≀ Sn ∈ F .

(d) If G ∈ F , then G ≀ Zn ∈ F .

(e) If G1, G2 ∈ F , then (G1, G2) ≀≀ Dn ∈ F , for n ≥ 3 odd, where |Ω1| = 2n
and |Ω2| = n.

(f) If G1, G2, G3 ∈ F , then (G1, G2, G3) ≀≀ Dn ∈ F , for n ≥ 2 even, where
|Ω1| = 2n and |Ω2| = |Ω3| = n, and Dn acts on Ω1 regularly, and acts on
Ω2 and Ω3 as on the vertices and edges of the regular n-gon, respectively.

We split the proof into the following two lemmas.

Lemma 5.29. Each group in Fix(PLANAR) is isomorphic to a group in F .

Proof. Let X = X0, X1, . . . , Xr be the reduction series of a planar graph X.
We proceed by an induction on i = 1, . . . , r. If i = 1, then A∗

e = Ae, for any
e ∈ E(X1), is an atom of X = X0, or an edge of X0. By Lemma 5.24, we have
Aut(Ae)(∂Ae) ∈ F .

If i > 1, we fix an edge f ∈ E(Xi) and set A = Af . By Theorem 5.10,

Aut(A∗)(∂A∗) ∼=
⎛⎝ ∏︂

e∈E(A)
Aut(A∗

e)(∂A∗
e)

⎞⎠ ⋊ Aut(A)(∂A),

where the right hand side is the inhomogeneous wreath product defined by the
action of Aut(A)(∂A) on E(A). Recall that if an edge e ∈ E(A) does not expand
into an atom, then Aut(A∗

e)(∂A∗
e) is trivial.

Let {Ω1, . . . ,Ωm} be the partition of E(A) into the orbits of the action of
Aut(A)(∂A). By induction hypothesis, for every j ∈ {1, . . . ,m} and for every
e ∈ Ωj and there is Kj ∈ F such that Kj

∼= Aut(A∗
e)(∂A∗

e). Then

Aut(A∗)(∂A∗) ∼= G =
(︂
Kℓ1

1 × · · · ×Kℓm
m

)︂
⋊ S, (5.4)

where ℓi = |Ωi|, and S ∼= Aut(A)(∂A) acts on E(A). We split the proof into several
cases, depending on the type of A.

Case 1: A is a star atom or a dipole atom. By Lemma 5.24, S = Sℓ1×· · ·×Sℓm ,
where Sℓj

is isomorphic to the subgroup of Aut(A)(∂A) fixing every edge not in the
orbit Ωj. For every j, G contains a subgroup Gj

∼= Kj ≀ Sℓj
∈ F . By definition,

the subgroups Gj and Gk, for j ̸= k, are disjoint. Moreover, if g ∈ Gj and g′ ∈ Gk

then gg′ = g′g. Therefore,

Aut(A∗)(∂A∗) ∼= G ∼= K1 ≀ Sℓ1 × · · · ×Km ≀ Sℓm .

The group on the right side belongs to F .
Case 2: A is a proper atom. By Lemma 5.24, either Aut(A)(∂A) is triv-

ial, or Aut(A)(∂A) ∼= Z2. In the first case, there is nothing to prove since each
Aut(A∗

e)(∂A∗
e), for e ∈ E(A), is isomorphic to a group from F and so is their direct

product.
In the second case, the induced action of Z2 on E(A) has orbits {Ω1, . . . ,Ωm}

of size at most 2. Let Ω1, . . . ,Ωt, for some 0 ≤ t ≤ m, be the orbits of size 1. By
substituting to (5.4), we get

G =
(︂
K1 × · · · ×Kt ×K2

t+1 × · · · ×K2
m

)︂
⋊ Z2,

106

where Ki ∈ F , for i = 1, . . . ,m, by induction. Denote G1 = K1 × · · · ×Kt and
G2 = Kt+1 × · · · ×Km. By Lemma 1.8

G ∼= G1 × (Kt+1, . . . , Km) ≀≀ Z2.

By Lemma 1.9
G ∼= G1 ×G2 ≀ Z2,

which belongs to F .
Case 3: A is a block atom. Since A is essentially 3-connected, Aut(A)(∂A) is

isomorphic to a point-stabilizer of a spherical group. By Lemma 5.24, we have
Aut(A)(∂A) ∼= S is a subgroup of a dihedral group, in particular, either S cyclic
of type nn or S is dihedral of type *nn. We distinguish three cases: S ∼= Zn with
n ≥ 2, S ∼= Dn with n ≥ 3 and n odd, S ∼= Dn with n ≥ 2 and n even.

Let Aut(A)(∂A) ∼= Zn. The induced action of the group Zn on E(A) has orbits
{Ω1, . . . ,Ωm} of size 1 or n; see Table 5.1. Let Ω1, . . . ,Ωt be the orbits of size 1,
for some 0 ≤ t ≤ 2. By substituting to (5.4), we get

G =
(︂
K1 × · · · ×Kt ×Kn

t+1 × · · · ×Kn
m

)︂
⋊ Zn,

where Ki ∈ F , for i = 1, . . . ,m, by induction. Denote G1 = K1 × · · · ×Kt and
G2 = Kt+1 × · · · ×Km. By Lemma 1.8

G ∼= G1 × (Kt+1, . . . , Km) ≀≀ Zn.

Since the action of Zn is regular on each Ωj, for j > t, the actions of Zn on Ωj

are all isomorphic. By Lemma 1.9

G ∼= G1 ×G2 ≀ Zn,

which belongs to F .
Let Aut(A)(∂A) ∼= Dn with n ≥ 3 and n odd. The induced action of Dn on

E(A) has orbits {Ω1, . . . ,Ωm} of possible sizes 1, n, and 2n; see Table 5.1. There
are integers 0 ≤ t1 ≤ t2 ≤ m, t1 ≤ 2, such that the orbits Ω1, . . . ,Ωt1 are of size
1, the orbits Ωt1+1, . . . ,Ωt2 are of size n, and the orbits Ωt2+1, . . . ,Ωm are of size
2n. By substituting to (5.4), we get

G ∼=
(︂
K1 × · · · ×Kt1 ×Kn

t1+1 × · · · ×Kn
t2 ×K

2n
t2+1 × · · · ×K2n

m

)︂
⋊Dn,

where Ki ∈ F , for i = 1, . . . ,m, by induction. Denote G1 = K1 × · · · × Kt1 ,
G2 = Kt1+1 × · · · ×Kt2 , and G3 = Kt2+1 × · · · ×Km. By Lemma 1.8

G ∼= G1 × (Kt1+1, . . . , Km) ≀≀ Dn.

By Lemma 1.4, the actions of Dn on all Ωj, for t1 < j ≤ t2, are isomorphic. The
actions of Dn on all Ωj, for j > t2, are all regular and therefore isomorphic. By
Lemma 1.9

G ∼= G1 × (G2, G3) ≀≀ Dn,

which belongs to F .
Let Aut(A)(∂A) ∼= Dn with n ≥ 2 and n even. The induced action of Dn on

E(A) has orbits {Ω1, . . . ,Ωm} of possible sizes 1, n, and 2n; see Table 5.1. By

107

X

X

X

X

X

u

u
u

u

u

w
Y

v

X

u

X

u
Y

v

X
u

X

u

Y

v

X

u
Xu

w

Y
v

X

u

Y
′

v
′

X

u

Y

v
X

u

Y
′
v
′

X
u

Y

v

X

u

Y
′

v
′

X

u

Y

v
X

u
Y

′
v
′

X
u

Figure 5.6: (a) Aut(Z) ∼= Aut(X) ≀Z5, (b) Aut(Z) ∼= (Aut(X),Aut(Y)) ≀≀ D3, (c)
Aut(Z) ∼= (Aut(X),Aut(Y),Aut(Y ′)) ≀≀ D4

Lemma 1.4, there are two possible non-isomorphic actions of Dn on n points.
Thus, there are integers 0 ≤ t1 ≤ t2 ≤ t3 ≤ m such that the orbits Ω1, . . . ,Ωt1

are of size 1, the orbits Ωt1+1, . . . ,Ωt2 are of size n, the orbits Ωt2+1, . . . ,Ωt3 are
of size n, and the orbits Ωt3+1, . . . ,Ωm are of size 2n, and the Dn-sets Ωi and Ωj,
for t1 < i ≤ t2 and t2 < j ≤ t3, are non-isomorphic. By substituting to (5.4), we
get

G =
⎛⎝ t1∏︂

i=1
Ki ×

t2∏︂
i=t1+1

Kn
i ×

t3∏︂
i=t2+1

Kn
i ×

m∏︂
i=t3+1

K2n
i

⎞⎠ ⋊Dn,

where Ki ∈ F , for i = 1, . . . ,m, by induction. Denote G1 = K1 × · · · × Kt1 ,
G2 = Kt1+1× · · · ×Kt2 , G3 = Kt2+1× · · · ×Kt3 , and G4 = Kt3+1× · · · ×Km. By
Lemma 1.8

G ∼= G1 × (Kt1+1, . . . , Km) ≀≀ Dn.

By Lemma 1.9
G ∼= G1 × (G2, G3, G4) ≀≀ Dn,

which belongs to F .

Lemma 5.30. Each group in F is isomorphic to a group in Stab(PLANAR).

Proof. We prove the statement by induction on the number of operations needed
to construct a group in F . Clearly, the trivial group is in Stab(PLANAR). Let
H ∈ F be nontrivial, then it is constructed by one of the operations (b)–(f), for
which we prove the statement separately.

Let H = G1 × G2 ∈ F , for G1, G2 ∈ Stab(PLANAR). By the induction
hypothesis, there are X and Y such that G1 ∼= Aut(X)u and G2 ∼= Aut(Y)v. If
X ∼= Y , we modify Y by attaching an end-vertex of a copy of P2 to all vertices
in V (Y) \ {v}. We form a Z with w ∈ V (Z), where w arises by identifying u and
v. Now, H = G1 ×G2 ∼= Aut(Z)w ∈ Stab(PLANAR).

Let H = G ≀ Sn ∈ F , for G ∈ Stab(PLANAR). By the induction hypothesis,
there is a graph X and u such that G ∼= Aut(X)u. We form a Z with w ∈ V (Z),
where w is arises by identifying n copies of X at the vertex u. Now, H = G ≀Sn

∼=
Aut(Z)w ∈ Stab(PLANAR).

Let H = G ≀ Zn ∈ F , for G ∈ Stab(PLANAR). By the induction hypothesis,
there is a graph X and u such that G ∼= Aut(X)u. We form a graph Z as follows.

108

We take an n-wheel Wn with the center w and outer vertices labeled {0, . . . , n−1}.
We indentify the vertex i with the vertex u in a copy of X. Finally, we replace
every edge joining the vertices i and i+ 1 mod n by the graph below.

Now, H = G ≀ Zn
∼= Aut(Z)w ∈ Stab(PLANAR).

Let H = (G1, G2) ≀≀ Dn ∈ F , for G1, G2 ∈ Stab(PLANAR) and n ≥ 3 odd.
By the induction hypothesis, there are graphs X and Y such that G1 ∼= Aut(X)u

and G2 ∼= Aut(Y)v. We form a graph Z as follows. We take an 3n-wheel W3n

with the center w and outer vertices labeled {0, . . . , 3n − 1}. For every i = 0
(mod 3), we indentify the vertex i with the vertex v in a copy of Y . For every
i ̸= 0 (mod 3), we identify the vertex i with the vertex u in a copy of X. Now,
H = (G1, G2) ≀≀ Dn

∼= Aut(Z)w ∈ Stab(PLANAR).
Let H = (G1, G2, G3) ≀≀ Dn ∈ F , for G1, G2, G3 ∈ Stab(PLANAR) and n ≥ 2

even. By the induction hypothesis, there are graphs X, Y , and Y ′ such that
G1 ∼= Aut(X)u, G2 ∼= Aut(Y)v, and G3 ∼= Aut(Y ′)v′ . We form a graph Z as
follows. We take an 4n-wheel W4n with the center w and outer vertices labeled
{0, . . . , 4n−1}. For every i = 1 (mod 2), we indentify the vertex i with the vertex
u in a copy of X. For every i = 0 (mod 4), we identify the vertex i with the vertex
v in a copy of Y . For every remaining i, we identify the vertex i with the vertex
v′ in a copy of Y ′. Now, H = (G1, G2, G3) ≀≀ Dn

∼= Aut(Z)w ∈ Stab(PLANAR).
Figure 5.6 demonstrates the last three constructions.

5.6.2 Composing spherical groups with vertex-stabilizers
Finally, we can state our main theorem. Recall that for every spherical group Q,
the complete sequence of pairwise distinct isomorphism classes of orbits of the
action of Q is in terms of the respective point stabilizers determined in the last
column of Table 5.1. Each representative of an orbit of Q can be constructed as
the set of left cosets of the stabiliser with the action of Q by left multiplication.

Theorem 5.31. We have Aut(PLANAR) = P, where P is defined as follows:
if G1, . . . , Gm ∈ Stab(PLANAR) and Q is a spherical group acting on Ω with m
pairwise non-isomorphic orbits, then (G1, . . . , Gm) ≀≀ Q ∈ P, where the index
sets Ω1, . . . ,Ωm and the action of Q on Ω = ⋃︁m

i=1 Ωi determining the inhomoge-
neous wreath product is defined by left multiplication on the left coset spaces Ωi

of subgroups of Q, listed in the last entry of the respective row in Table 5.1.

Proof of Theorem 5.31. By Lemma 5.27, we have that

Stab(PLANAR) = Fix(PLANAR),

thus we shall use them interchangebly.
Aut(PLANAR) ⊆ P : Let X be a planar graph, XR be its reduction and

let Q ∼= Aut(XR). By Lemma 5.26, Q is a spherical group. By Theorem 5.12,
Aut(X) ∼= (K1, . . . , Km) ≀≀Ω′ Q, where Ω′ = E(XR), and m is the number of edge-
orbits in the action of Q on Ω′, and Gi ∈ Fix(PLANAR), for i = 1, . . . ,m. By
Lemma 1.9, there are groups G1, . . . , Gm ∈ Fix(PLANAR) such that Aut(X) ∼=

109

(G1, . . . , Gm) ≀≀Ω Q, where the Q-sets Ωi, for i = 1, . . . ,m, are pairwise non-
isomorphic. In Table 5.1 (last column), each Q-set Ωi is determined as the left
coset space of a subgroup of Q.

Aut(PLANAR) ⊇ P : If G1, . . . , Gm ∈ Stab(PLANAR) and Q is a spherical
group acting on Ω = ⋃︁m

i=1 Ωi with pairwise non-isomorhic orbits Ω1, . . . ,Ωm, then
let G = (G1, . . . , Gm) ≀≀ Q ∈ P . First, we construct a 3-connected primitive
planar graph Y , with Aut(Y) ∼= Q, and with orbits V1, . . . , Vm ⊆ V (Y) such
that the Q-sets Vi and Ωi are isomorphic. Such a 3-connected planar graph Y is
uniquely determined by its quotient Y/Q embedded in the corresponding orbifold
S2/Q. For each spherical group Q, such a quotient is depicted in Figure 5.4. It
may happen that Q is isomorphic to a proper subgroup of Aut(Y), in this case
we use a suitable coloring of edges to ensure Aut(Y) ∼= Q.

Now, to construct X, we proceed as follows. For i = 1, . . . ,m, we choose a
planar graph Yi with Gi

∼= Aut(Yi)(∂Yi), and for every v ∈ Vi, we take a copy of
Yi and identify the unique vertex of ∂Yi with v.

110

6. Automorphism groups of maps
in linear time

6.1 Introduction
In this chapter, we are interested in planar graphs and, more generally, graphs of
bounded genus. In 1966, Weinberg [161] gave a very simple quadratic algorithm
for the graph isomorphism of planar graphs. This was improved by Hopcroft and
Tarjan [93] to O(n log n). Building, on this earlier work, Hopcroft and Wong [94]
published in 1974 a paper, where they described a linear-time algorithm for iso-
morphism testing of planar graphs.

For graphs on surfaces of higher genus, the graph isomorphism problem seems
much harder. This can be perhaps explained in the following way. We can rather
easily reduce the problem to 3-connected graphs. For planar graphs, the famous
result of Whitney [163] says that embeddings of 3-connected planar graphs in
the plane are (combinatorially) unique. However, for every connected surface S
of non-positive Euler characteristic, there exist 3-connected graphs with expo-
nentially many embeddings into S. This makes an essential difference between
planar graphs and graphs of higher genus.

For quite a long time it has been known that the isomorphism of bounded
genus graphs can be solved in time nO(g), where g is the genus of the underlying
surface; see for example [137]. However, an interesting question is whether the
result of Hopcroft and Wong [94] can be generalized also for the bounded genus
graphs, i.e., whether the isomorphism problem for graphs of bounded genus can
be solved in time f(g) · n, for some computable function f . This motivates the
study of the isomorphism problem for embedded graphs first.

By a topological map we mean a 2-cell decomposition of a closed compact
surface, i.e., an embedding of a graph into a surface such that every face is home-
omorphic to an open disc. An isomorphism of two maps is an isomorphism of the
underlying graphs, which preserves the vertex-edge-face incidences. In particular,
a map isomorphism induces a homeomorphism of the underlying surfaces. Our
main result reads as follows.

Theorem 6.1. Let M1 and M2 be maps on a surface of genus g. The set of
all isomorphisms Iso(M1,M2) from M1 to M2 can be determined in time f(g) ·
(∥M1∥+ ∥M2∥), where f is some computable function and ∥M∥ denotes the size
of the map M .

Determining the set of all isomorphisms between two maps is closely related
to finding the generators of the automorphism group Aut(M) of a map M , where
an automorphism of M is just an isomorphism M → M . More precisely, the set
of all isomorphisms M1 → M2 can be expressed as a composition ψ · Aut(M1)
where ψ : M1 →M2 is any isomorphism. Thus, our first result goes hand-in-hand
with the following.

Theorem 6.2. Let M be a map on a surface of genus g. The generators of the
automorphism group Aut(M) of M can be computed in time f(g) · ∥M∥, where f
is some computable function and ∥M∥ denotes the size of the map M .

111

Colbourn and Booth [40] proposed a way to modify the Hopcroft-Wong algo-
rithm [94] to compute the generators of the automorphism group of a spherical
map. However, they state the following: “We ... base our automorphism al-
gorithms on the Hopcroft-Wong algorithm. Necessarily, we will only be able to
sketch our procedure. A more complete description and a proof of correctness
would require a more thorough analysis of the Hopcroft-Wong algorithm than has
yet appeared in the literature.“ Sadly, the situation has not changed since, and
the only available description of the Hopcroft-Wong algorithm is the extended
abstract [94], which contains no proof of correctness and running time.1 Our
contribution also fills in this gap and we obtain much better insight into the
Hopcroft-Wong algorithm by solving the problem in a much greater generality;
see [99] as well.

Roughly speaking, the key idea of the Hopcroft-Wong algorithm is to try to
apply contractions of edges to obtain two smaller isomorphic maps. In order to
do this, edges must be chosen canonically, which is not always possible. Since
Hopcroft and Wong consider only the spherical case, this situation occurs only
in one special case. However, on the surfaces of higher genus, this situation is
quite common and requires a completely different, more systematic, approach.
As a consquence of considering the problem on the higher genus, our approach
turnes out to be much simpler even for planar graphs than the approach originally
proposed by Colbourn and Booth [40].

The Hopcroft-Wong algorithm reduces spherical maps to maps having the
same degrees of vertices and also the same degrees of faces (e.g. Platonic solids).
These maps are then treated separately. We, however, relax this condition and
instead reduce our map to a map having the same cyclic vector of face sizes at
each vertex (e.g. on sphere these also include Archimedean solids). The number
of such maps is bounded for surfaces of genus g > 1, and for surfaces of genus
g ≤ 1 we give some special algorithms. This, surprisingly, allows a much more
unified method of reducing the map, while preserving its automorphisms and
isomorphisms.

Simultaneous conjugation problem. The problems of testing isomorphism
of maps and computing the generators of the automorphism group of a map
are related to the problem of simultaneous conjugation. In the latter problem,
the input consists of two sets of permutations α1, . . . , αd and β1, . . . , βd on the set
{1, . . . , n}, each of which generates a transitive subgroup of the symmetric group.
The goal is to find a permutation γ such that γαiγ

−1 = βi, for i = 1, . . . , d. Let us
observe that this problem is a generalization of the map isomorphism problem. If
α1 and β1 are involutions, d = 2, and the set {1, . . . , n} is identified with the set
of darts of a map on a surface (see Section 6.2 for definitions), then this problem
is exactly the map isomorphism problem. If further α1 = β1 and α2 = β2, we get
the map automorphism problem.

Since mid 1970s it has been known that the simultaneous conjugation prob-
lem can be solved in time O(dn2) [68, 90]. A faster algorithm, with running
time O(n2 log d/ log n + dn log n), was found only recently [27]. This implies an
O(n2/ log n) algorithm for the isomorphism and automorphism problems for maps

1The PhD thesis of Wong also does not bring any new information compared to [94].

112

of unrestricted genus. In complexity theory, this is not considered to be a “truly
subquadratic” algorithm. This motivates the following conjecture.
Conjecture 6.3. There is no ε > 0 for which there is an algorithm for testing
isomorphism of maps of unrestricted genus in time O(n2−ε).

An interesting open subproblem is to prove a conditional “truly superlinear”
lower bound for any of the mentioned problems. There has been some progress in
the direction of providing a lower bound. In particular it is known that the com-
munication complexity of the simultaneous conjugation problem is Ω(dn log(n)),
for d > 1, and that under the decision tree model the search version of the
simultaneous conjugation problem has lower bound of Ω(n log n) [26].

6.2 Preliminaries: maps on surfaces
A map M is 2-cell decomposition of a closed connected compact surface S. The
0-cells, 1-cells and 2-cells are called respectively the vertices, the edges and the
faces of M . Equivalently, a map is defined by an embedding ι : X → S of a
connected graph X into S such that every connected component of S \ ι(X) is
homeomorphic to an open disc. By V (M), E(M), and F (M) we denote the
sets of vertices, edges, and faces of M , respectively. We put v(M) := |V (M)|,
e(M) := E(M), and f(M) := |F (M)|.

Recall that closed connected compact surfaces are characterized by two in-
variants: the orientability and the Euler characteristic χ.

The above invariants of M are related as follows.
Theorem 6.4 (Euler-Poincaré formula). Let M be a map on a surface S. Then

v(M)− e(M) + f(M) = χ(S) =
{︄

2− 2g, if S orientable of genus g;
2− γ, if S is non-orientable of genus γ.

In what follows, we present an algebraic description of a map suitable for
investigation of automorphisms and isomorphisms between maps. We follow the
description from [97], where the reader can find more details. For some deep
reasons we introduce different models for maps on orientable surfaces and for
non-orientable maps.

Oriented maps. Even though our main concern is in general maps, a large part
of our algorithm deals with maps on orientable surfaces. An oriented map is a
map on an orientable surface with a fixed global orientation. Every oriented map
can be combinatorially described as a triple (D,R,L). Here, D is the set of darts.
By a dart we mean an oriented edge. Hence, each edge gives rise to two darts. The
permutation R ∈ Sym(D), called rotation, is the product R = Πv∈VRv, where
each Rv cyclically permutes the darts originating at v ∈ V , following the chosen
orientation around v. The dart-reversing involution L ∈ Sym(D) is an involution
of D that, for each edge, swaps the two oppositely directed darts arising from the
edge.

Formally, a combinatorial oriented map is any triple M = (D,R,L), where
D is a finite non-empty set of darts, R is any permutation of darts, L is a fixed-
point-free involution of D, and the group ⟨R,L⟩ ≤ Sym(D) is transitive on D.
By the size ∥M∥ of the map, we mean the number of darts |D|.

113

The group ⟨R,L⟩ is called the monodromy group of M . The vertices, edges,
and faces of M are in one-to-one correspondence with the cycles of the permuta-
tions R, L, R−1L, respectively. By the phrase “a dart x is incident to a vertex
v” we mean that x ∈ Rv. Similarly, “x is incident to a face f” means that x
belongs to the boundary walk of f defined by the respective cycle of R−1L. By
the degree of a face we mean the length of its boundary walk. A face of degree d
will be called a d-face. Note that each dart is incident to exactly one face. For
convenience, we frequently use a shorthand notation x−1 = Lx, for x ∈ D. The
dual of an oriented map M = (D,R,L) is the oriented map M∗ = (D,R−1L,L).

Apart from standard map theory references, we need to introduce labeled
maps. A planted tree is a rooted tree embedded in the sphere, i.e., a planted
tree is a spherical map having exactly one face. We say that a planted tree is
integer-valued if to each vertex there is assigned an integer. A dart-labeling of
an oriented map M = (D,R,L) is a mapping ℓ : D → T , where T is the set of
integer-valued planted trees. A labeled oriented map M is a 4-tuple (D,R,L, ℓ).
The dual map is the map M∗ defined as M∗ = (D,R−1L,L, ℓ).

Two labeled oriented maps M1 = (D1, R1, L1, ℓ1) and M2 = (D2, R2, L2, ℓ2)
are isomorphic, in symbols M1 ∼= M2, if there exists a bijection ψ : D1 → D2,
called an orientation-preserving isomorphism from M1 to M2, such that

ψR1 = R2ψ, ψL1 = L2ψ, and ℓ1 = ℓ2ψ. (6.1)

The set of orientation-preserving isomorphisms from M1 to M2 is denoted by
Iso+(M1,M2). The orientation-preserving automorphism group of M is the set
Aut+(M) := Iso+(M,M). Algebraically, the group Aut+(M) is the label preserv-
ing subgroup of the centralizer of the monodromy group ⟨R,L⟩ in Sym(D).

The following statement, well-known for unlabeled maps, extends easily to
labeled maps.

Theorem 6.5. Let M1 and M2 be labeled oriented maps with sets of darts D1
and D2, respectively. For every x ∈ D1 and every y ∈ D2, there exists at most
one isomorphism M1 → M2 mapping x to y. In particular, Aut+(M1) is fixed-
point-free on D1.

Corollary 6.6. Let M1 and M2 be labeled oriented maps with sets of darts D1
and D2, respectively. If x ∈ D1 and y ∈ D2, then it can be checked in time
O(|D1|+ |D2|) whether there is an isomorphism mapping x to y.

Chirality. The mirror image of an oriented map M = (D,R,L) is the oriented
map M−1 = (D,R−1, L). Similarly, the mirror image of labeled oriented map
M = (D,R,L, ℓ) is the map M−1 = (D,R−1, L, ℓ−1), where ℓ−1(x) is the mirror
image of ℓ(x) for each x ∈ D.

An oriented map M is called reflexible if M ∼= M−1. Otherwise the maps
M and M−1 form a chiral pair. For example, all the Platonic solids are reflex-
ible. The set of all isomorphisms from M1 to M2 is defined as Iso(M1,M2) :=
Iso+(M1,M2) ∪ Iso+(M1,M

−1
2). Similarly, we put Aut(M) := Iso(M,M).

Maps on all surfaces. Let M be a map on any, possibly non-orientable, sur-
face. In general, a combinatorial non-oriented map is a quadruple (F, λ, ρ, τ),

114

where F is a finite non-empty set of flags, and λ, ρ, τ ∈ Sym(F) are fixed-point-
free2 involutions such that λτ = τλ and the group ⟨λ, ρ, τ⟩ acts transitively on
F . By the size ∥M∥ of the map M we mean the number of flags |F |.

Each flag corresponds uniquely to a vertex-edge-face incidence triple (v, e, f).
Geometrically, it can be viewed as the triangle defined by v, the center of e, and
the center f . The group ⟨λ, ρ, τ⟩ is called the non-oriented monodromy group
of M . The vertices, edges, and faces of M correspond uniquely to the orbits
of ⟨ρ, τ⟩, ⟨λ, τ⟩, and ⟨ρ, λ⟩, respectively. Similarly, an isomorphism of two non-
oriented maps M1 and M2 is a bijection ψ : F → F which commutes with λ, ρ, τ .
The even-word subgroup ⟨ρτ, τλ⟩ has index at most two in the monodromy group
of M . If it is exactly two, the map M is called orientable. For every oriented
map (D,R,L) it is possible to construct the corresponding non-oriented map
(F, λ, ρ, τ). Conversely, from an orientable non-oriented map (F, λ, ρ, τ) it is
possible to construct two oriented maps (D,R,L) and (D,R−1, L).

Test of orientability. For a non-oriented map M = (F, λ, ρ, τ), it is possible
to test in linear time if M is orientable [85, 129]. The barycentric subdivision
B of M is constructed by placing a new vertex in the center of every edge and
face, and then joining the centers of faces with the incident vertices and with the
center of the incident edges. The dual of B is 3-valent map, i.e., every vertex is
of degree three.

Theorem 6.7. A map M = (F, λ, ρ, τ) is orientable if and only if the underlying
3-valent graph of the dual of the barycentric subdivision of M is bipartite.

Face-normal maps. A map is called face-normal, if all its faces are of degree
at least three. It is well-known that every face-normal map on the sphere or on
the projective plane has a vertex of degree at most 5. Using the Euler-Poincaré
formula, this can be generalized for other surfaces.

Theorem 6.8. Let S be a closed compact surface with Euler characteristic χ(S) ≤
0 and let M be a face-normal map on S. Then there is a vertex of valence at
most 6(1− χ(S)).

Proof. A bound for maximum degree is achieved by a triangulation, thus we may
assume that M is a triangulation. We have f = 2e/3. By plugging this in the
Euler-Poincaré formula and using the Handshaking lemma, we obtain 3v−dv/2 =
3χ(S), where d is the average degree. By manipulating the equality, we get
d− 6 = −6χ(S)/v. Since χ(S) ≤ 0, the right hand side is maximized for v = 1.
We conclude that d ≤ 6(1− χ(S)).

The lexicographically minimal representative of the cyclic vector of degrees of
faces incident with a vertex v, induced by the chosen global orientation, is called
the local type of v. A vertex is light if its local type is minimal with respect to
lexicographic linear ordering, otherwise a vertex is heavy. In particular, a light
vertex is of minimum degree. Theorem 6.8 implies that, in a face-normal map,
the degree of light vertices is bounded by a function of χ(S).

2It is possible to extend the theory to maps on surfaces with boundaries by allowing fixed
points of λ, ρ, τ . [28]

115

Uniform and homogeneous maps. A map is uniform3 if the local types of
all vertices are the same. A map is homogeneous of type {k, ℓ} if every vertex is
of degree k and every face is of degree ℓ.

A dipole is a 2-vertex spherical map which is dual to a spherical cycle. A
bouquet is a one-vertex map that is a dual of a planted star (a tree with at most
one vertex of degree > 1).
Example 6.9. The face-normal uniform spherical maps are: the 5 Platonic solids,
the 13 Archimedean solids, pseudo-rhombicuboctahedron, prisms, antiprisms,
and cycles of length at least 3. It easily follows from Euler’s formula that the
spherical homogeneous maps are the 5 Platonic solids, cycles, and dipoles.

6.3 Overview of the algorithm
We provide a high-level overview of the whole algorithm determining the auto-
morphism group of a map. The input consists of a non-oriented map given by
the quadruple N = (F, λ, ρ, τ).

First, using Theorem 6.7, we test whether N is orientable or not. If the map
is orientable, then we know that the underlying surface is orientable and we fix a
global orientation of the surface. We construct two oriented maps M = (D,R,L)
and M−1 = (D,R−1, L) representing N .

We start by determining Aut+(M). On the map M , we perform a sequence
of elementary local reductions (Section 6.4). There are two types of reductions:
normalization and elimination of vertices of minimum degree. The normalization
is of the highest priority and its purpose is to ensure that the resulting map is
face-normal. In a face-normal map, it is guaranteed by Theorem 6.8 that there
is a vertex of small degree. The second elementary reduction replaces a vertex
of minimum degree by a polygon connecting its higher-degree neighbours and
reconnecting the other incident edges (see Figure 6.3). These two reductions are
applied until we are left with a map which has all vertices of degree k. Now, we
observe that our reductions do not really depend on the degrees of vertices, but
rather on some vertex-labelling (not related to dart labelling) which is linearly
ordered. At this stage we can no longer distinguish vertices based on their degreee.
We refine the procedure by using the local types instead of degrees. It follows
from Theorem 6.8 that the number of local types sufficient to consider is bounded.
Thus, our reduction can be applied in the same way, but instead of degrees
we use local types. The result is a labeled face-normal uniform oriented map
M ′ = (D′, R′, L′, ℓ′) with Aut+(M) ∼= Aut+(M ′) and D′ ⊆ D; for more details
see Section 6.4.

The number of face-normal uniform oriented map M ′ on a surface of genus
g > 1 is bounded by a fucntion of g (Proposition 6.13), which means that a
brute-force approach is sufficient to determine Aut+(M ′). For the case of sphere
and torus, the problem is non-trivial since there are infinite families of face-
normal uniform maps and a special treatment is necessary; for more details see
Section 6.5. Now, since Aut+(M) acts fixed-point-freely on D and D′ ⊆ D, there
is a unique way to extend Aut+(M ′) to Aut+(M). Finally, to construct Aut(M),
we run the whole algorithm again to determine Iso(M,M−1).

3In [9] Babai uses the term semiregular instead of uniform.

116

If the map is N is non-orientable, we construct its oriented antipodal double-
cover ˜︂M = (D,R,L) = (F, ρτ, τλ). We show that Aut(N) ≤ Aut+(˜︂M), and
therefore, we can again apply our algorithm to determine Aut+(˜︂M). Here, the
most difficult part is to determine Aut(N) within Aut+(˜︂M). For the case of
projective plane and Klein bottle the problem is highly non-trivial and a special
treatment is again needed, while for the other cases, again, a brute force approach
is sufficient; for more details see Section 6.6.

6.4 From oriented to uniform oriented maps
In this section, we describe in detail a set of elementary reductions defined on
labeled oriented maps, given by a quadruple (D,R,L, ℓ). The output of each
elementary reduction is always a quadruple (D′, R′, L′, ℓ′), satisfying D′ ⊆ D,
v(M ′) + e(M ′) < v(M) + e(M), and Aut+(M ′) = Aut+(M). If none of the
reductions apply, the map is a uniform oriented map. This defines a function
which assigns to a given oriented map M a unique labeled oriented map U with
Aut+(M) ∼= Aut+(U). Since the darts of U form a subset of the darts of M ,
by semiregularity, every generator of Aut+(U) can be extended to a generator of
Aut+(M) in linear time. We deal with the uniform oriented maps in Section 6.5.

After every elementary reduction, to ensure that Aut+(M ′) = Aut+(M), we
need to define a new labeling ℓ′. To this end, in the whole section, we assume
that we have an injective function Label : N × ⋃︁∞

k=1 T k → T , where T is the
set of all integer-valued planted trees. Moreover, we assume that the root of
Label(t, T1, . . . , Tk) contains the integer t, corresponding to the current step of
the reduction procedure. After every elementary reduction, this integer is in-
creased by one. In Section 6.7, we show how to evaluate Label in linear time.

Normalization. By Theorem 6.8, there is always a light vertex in a face-normal
map. The purpose of the following reduction is to remove faces of degree one and
two. This reduction is of the highest priority and it is applied until the map is
one of the following: (i) face-normal, (ii) bouquet, (iii) dipole. In the cases (ii)
and (iii), the whole reduction procedure stops with a uniform map. In the case
(i), the reduction procedure continues with further reductions. We describe the
reduction formally.

For technical reasons we split the reduction into two parts: deletion of loops,
denoted by Loops(M), and replacement of a dipole by an edge, denoted by
Dipoles(M).

Reduction Loops. If M = (D,R,L, ℓ) with v(M) > 1 contains loops, we
remove them. Let L be the list of all maximal sequences of darts of the form
s = {x1, x

−1
1 , . . . , xk, x

−1
k }, where Rxi = x−1

i , for i = 1, . . . , k, Rx−1
i = xi+1 for

i = 1, . . . , k − 1, and Rx−1
k ̸= x1. By definition, R−1Lxi = xi, hence xi bounds a

1-face, for i = 1, . . . , k−1; see Figure 6.1. Moreover, for each such sequence s, all
the darts xi are incident to the same vertex v ∈ V (M). We say that the unique
vertex v with Rv = (x0, x1, x

−1
1 , . . . , xk, x

−1
k , xk+1, . . .) is incident to s. We call

the darts x0 and xk+1 the bounding darts of the sequence s.

117

The new map M ′ = (D′;R′, L′, ℓ′) =: Loops(M) is defined as follows. First,
we put D′ := D \⋃︁

s∈L s, and L′ := L↾D′ . Let s = {x1, x
−1
1 , . . . , xk, x

−1
k } ∈ L with

bounding darts x0 and xk+1. If v is incident to s, then we put R′
v := (x0, xk+1, . . .),

else we put R′
v := Rv. Moreover, we put ℓ′(x0) := Label(t, a0, . . . , ak) and

ℓ′(xk+1) := Label(t, ak+1, bk, . . . , b1), where t is the current step, ai = ℓ(xi), for
i = 0, . . . , k + 1, and bi = ℓ(x−1

i), for i = 1, . . . , k. For every x ∈ D′ which is not
a bounding dart in M , we put ℓ′(x) := ℓ(x). We obtain a well-defined map M ′

with no faces of valence one; see Figure 6.1.

Lemma 6.10. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩ D2 = ∅, be la-
beled oriented maps. Let M ′

1 := Loops(M1) and M ′
2 := Loops(M2). Then

Iso+(M1,M2)↾D′
1

= Iso+(M ′
1,M

′
2). In particular, Aut+(M1)↾D′

1
= Aut+(M ′

1).

Proof. If M has no 1-faces or if M is a bouquet, then M ′ = M and there is
nothing to prove. Otherwise, let ψ : M1 → M2 be an isomorphism. We prove
that ψ′ := ψ↾D′

1
is an isomorphism of M ′

1 and M ′
2. Since ψ preserves the set

of 1-faces, the mapping ψ′ is a well-defined bijection. We check the commuting
rules (6.1) for ψ′.

By the definition of Loops, L′
i = Li↾Di

, for i = 1, 2. Thus, we have ψ′L′
1 =

L′
2ψ

′. As concerns the permutations R′
1 and R′

2, we need to check the commuting
rule only at the darts preceding a sequence of 1-faces. With the above notation,
using the definition of M ′

1 and M ′
2, and the fact that ψ is an isomorphism, we get

ψ′R′
1x0 = ψ′R1(L1R1)kx0 = ψR1(L1R1)kx0 =

= R2(L2R2)kψx0 = R2(L2R2)kψ′x0 = R′
2ψ

′x0.

Finally, for ℓ′
1 and ℓ′

2, we have, by the definition of Loops,

ℓ′
1(x0) = Label(t, ℓ1(x0), . . . , ℓ1(xk)) = Label(t, ℓ2(ψx0), . . . , ℓ2(ψxk)) = ℓ′

2(ψ′x0)

if and only if
ℓ1(xi) = ℓ2(ψxi), for i = 0, . . . , k,

which is satisfied since ψ is an isomorphism. Similarly, ℓ′
1(xk+1) = ℓ′

2(ψxk+1).
Conversely, let ψ′ : M ′

1 → M ′
2 be an isomorphism. With the above notation,

we have
xi = R1(L1R1)ix0 and xk+1 = R′

1x0.

...

v

x0

x1

x
−1

1

x2 x
−1

2

x3

x
−1

3x4
...

v

x0 x4

Figure 6.1: A sequence of darts x1, x
−1
1 , x2, x

−1
2 , x3, x

−1
3 with bounding darts x0

and x4.

118

x1 x2 x3 x4 x5

...

...

x1

x
−

5

...

...

Figure 6.2: A sequence of darts x1, . . . , x5 forming a dipole.

Since Label is injective, it follows that there are y1, . . . , yk in D2 \D′
2 such that

yi = R2(L2R2)iψ′x0.

Here we employ the fact that t is increased after every elementary reduction. This
forbids the existence of an isomorphisms ψ′ : M ′

1 → M ′
2 taking a bounding dart

to a dart that is not bounding, i.e., ψ′ takes the set of bounding darts onto the
set of bounding darts. We define an extension ψ of ψ′ by setting ψxi = yi, for
i = 1, . . . , k. It is straightforward to check that ψ ∈ Iso+(M1,M2).

Reduction Dipoles. If M = (D,R,L, ℓ) with v(M) > 2 contains dipoles.
Let L be the list of all maximal sequences s = (x1, . . . , xk) of darts, k > 1,
satisfying Rxi = xi+1, (R−1L)2xi = xi, and either Rxk ̸= x1 or Rx−1

1 ̸= x−1
k ;

see Figure 6.2. Let s−1 := (x−1
k , . . . , x−1

1) ∈ L be the inverse sequence. There
are vertices u and v such that Ru = (y1, s, y2, . . .) and Rv = (z1, s

−1, z2, . . .), for
some y1, y2, z1, z2 ∈ D. At least one of the sets {y1, y2}, {z1, z2} is non-empty
since otherwise v(M) = 2 and M is a dipole. We say that u, v are incident to
s, s−1, respectively; see Figure 6.2

The new map M ′ = (D′, R′, L′, ℓ′) =: Dipoles(M) is defined as follows. First,
we put

D′ := D \
⋃︂

(x1,...,xk)∈L
{x2, . . . , xk} ∪ {x−1

1 , . . . , x−1
k−1}.

Let s = (x1, . . . , xk) ∈ L. If u and v are incident to s and s−1, respectively, then
we put R′

u := (y1, x1, y2 . . .) and R′
v := (z1, x

−1
k , z2, . . .), else we put R′

u := Ru.
Next, we put L′x1 := x−1

k , L′x−1
k := x1, and L′x := Lx if x /∈ s ∈ L. Finally, we

put ℓ′(x1) := Label(t, a1, . . . , ak) and ℓ′(x−1
k) := Label(t, bk, . . . , b1), where t is

the current step, ai = ℓ(xi) and bi = ℓ(x−1
i), for i = 1, . . . , k. We put ℓ′(x) := ℓ(x)

for x /∈ s ∈ L. We obtain a well-defined map M ′ with no 2-faces; see Figure. 6.2.

Lemma 6.11. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩ D2 = ∅, be la-
beled oriented maps. Let M ′

1 := Dipoles(M1) and M ′
2 := Dipoles(M2). Then

Iso+(M1,M2)↾D′
1

= Iso+(M ′
1,M

′
2). In particular, Aut+(M1)↾D′

1
= Aut+(M ′

1).

Proof. Let ψ : M1 → M2 be an isomorphism. We prove that ψ′ = ψ↾D′
1

is an
isomorphism of M ′

1 and M ′
2. Since ψ preserves the set of 2-faces, the mapping ψ′

is a well-defined bijection. We check the commuting rules (6.1) for ψ′.
We have L′

1x1 = x−1
k = L1R

k−1
1 x1 and L′

1x
−1
k = L1R

k−1
1 x−1

k from the definition
of Dipoles. Further,

ψ′L′
1x1 = ψ′L1R

k−1
1 x1 = ψL1R

k−1
1 x1 = L2R

k−1
2 ψx1 = L′

2ψ
′x1,

119

and

ψ′L′
1x

−1
k = ψ′L1R

k−1
1 x−1

k = ψL1R
k−1
1 x−1

k = L2R
k−1
2 ψx−1

k = L′
2ψ

′x−1
k .

It follows that ψL′
1 = L′

2ψ.
For R′

1 and R′
2, it follows that we need to check the commuting rule only at the

darts x1 and x−1
k bounding a sequence of 2-faces in M1. With the above notation,

using the definition of M ′
1 and M ′

2, and the fact that ψ is an isomorphism, we get

ψ′R′
1x1 = ψ′Rk−1

1 x1 = ψRk−1
1 x1 = Rk−1

2 ψx1 = R′
2ψx1 = R′

2ψ
′x1.

For x−1
k , the verification of the commuting rules is similar.

For ℓ′
1 and ℓ′

2, we have, by the definition of Dipoles,

ℓ′
1(x1) = Label(s, ℓ1(x1), . . . , ℓ1(xk)) =

= Label(s, ℓ2(ψx1), . . . , ℓ2(ψxk)) = ℓ′
2(ψ′x1)

if and only if
ℓ1(xi) = ℓ2(ψxi), for i = 1, . . . , k,

which is satisfied since ψ is an isomorphism. Similarly, we check that ℓ′
1(x−1

k) =
ℓ′

2(ψx−1
k).

Conversely, let ψ′ : M ′
1 → M ′

2 be an isomorphism. With the above notation,
we have

xi = Ri−1
1 x1 and x−1

i = Ri−1x−1
k ,

for i = 1, . . . , k. Since Label is injective, it follows that there are y2, . . . , yk in
D2 \D′

2 such that
yi = Ri−1

2 ψ′x1

determines a dipole. We define an extension ψ of ψ′ by setting ψxi := yi, for i =
2, . . . , k. It is straightforward to check that the extension ψ ∈ Iso+(M1,M2).

Face-normal maps. The input is a labeled face-normal oriented map M =
(D,R,L, ℓ) and a list L of all light vertices of degree d which have at least
one heavy neighbour. For every vertex v ∈ L, we denote by u0, . . . , uk−1, for
some 1 ≤ k ≤ d, the cyclic sequence of all heavy neighbours of v, following
the prescribed orientation of the underlying surface. Denote by x0, x1, . . . , xk−1
the darts based at u0, u1, . . . , uk−1, joining uj to v for j = 0, . . . , k − 1. Let
Rui

= (yi, xi, zi, . . .), for i = 0, . . . , k − 1, and let

Rv = (x−1
0 , A0, x

−1
1 , A1, . . . , x

−1
k−1, Ak−1),

where each Ai is a (possibly empty) sequence of darts.
The new map M ′ = (D′, R′, L′, ℓ′) =: Delete(M) is defined as follows.

We set D′ := D and L′ := L. For a heavy vertex w with no light neigh-
bour, we have R′

w := Rw. If v ∈ L, with the above notation, we set R′
ui

:=
(yi, Ai, xi, x

−1
i−1, zi, . . .). Moreover, we set ℓ′(xi) := Label(t, ℓ(xi)) and ℓ′(x−1

i) :=
Label(t, ℓ(x−1

i)), where t is the current step number; see Figure 6.3.

Lemma 6.12. Let Mi = (Di, Ri, Li, ℓi), i = 1, 2 where D1 ∩ D2 = ∅, be la-
beled oriented maps. Let M ′

1 := Delete(M1) and M ′
2 := Delete(M2). Then

Iso+(M1,M2) = Iso+(M ′
1,M

′
2). In particular, Aut+(M1) = Aut+(M ′

1).

120

...

...

..
.

..
.

...
...

...

...

...

...

v

u0

u1

u2

u3

u4

x0

x1

x2

x3

x4 a0

a1
a2

a3

a4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

A0

A1

A2

A3

A4

...

..
.

..
.

...

...
...

...

...
...

... u0

u1

u2u3

u4

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

z0

z1

z2

z3

z4

a0

a1

a2

a3

a4

A0

A1

A2

A3

A4

(a) (b)

Figure 6.3: An example of the reduction deleting a vertex.

Proof. Let ψ : M1 → M2 be an isomorphism. We prove that ψ is also an iso-
morphism of M ′

1 and M ′
2. We check the commuting rules (6.1) for ψ. We have

L′
i = Li, for i = 1, 2, so L′

1ψ = ψL′
2. For R′

1 and R′
2, we need to check the

commuting rules only at xi, x
−1
i , yi, ai ∈ D′

1, for i = 0, . . . , k − 1, where ai is the
last dart in the sequence Ai. We have

ψR′
1xi = ψR−1

1 L1xi = R−1
2 L2ψxi = R′

2ψxi,

ψR′
1x

−1
i = ψR1L1x

−1
i = R2L2ψx

−1
i = R′

2ψx
−1
i .

It remains to check the commuting rules at each yi and ai. Note that if Ai is
empty there is nothing to check. We have

ψR′
1yi = ψR1L1R1yi = R2L2R2ψyi = R′

2ψyi.

Further, using the relations R′
1ai = xi = L1R

q
1ai, for some q > 0, we get

ψR′
1ai = ψxi = ψL1R

q
1ai = L2R

q
2ψai = R′

2ψai.

Putting it together, we proved that ψR′
1 = R′

2ψ. Clearly, ℓ′
1(xi) = ℓ′

2(ψxi) if and
only if ℓ1(xi) = ℓ2(ψxi). Similarly for x−1

i .
For the converse, we assume that ψR′

1 = R′
2ψ and ψL′

1 = L′
2ψ and we prove

ψR1 = R2ψ and ψL1 = L2ψ. Similarly as above, we need to check the commuting
rules for xi, x

−1
i , yi, ai ∈ D1.

• By the definition of M ′
1 and M ′

2, we have R1xi = zi = (R′
1)2xi. Since Label

is injective, we have R2ψxi = ψzi = (R′
2)2ψxi. Using these relations, we get

ψR1xi = ψ(R′
1)2xi = (R′

2)2ψxi = R2ψxi.

• By the definition of M ′
1 and M ′

2, we have R1x
−1
i = R

′m
1 L′

1x
−1
i , for some

m. Since Label is injective, we have R2ψx
−1
i = R

′m
2 L′

2ψx
−1
i . Using these

relations, we get

ψR1x
−1
i = ψR

′m
1 L1x

−1
i = R

′m
1 L′

2ψx
−1
i = R2ψx

−1
i .

121

• By the definition of M ′
1 and M ′

2, we have R1yi = xi = R
′m
1 yi, for some m.

Since Label is injective, R2ψyi = ψxi = R
′m
2 ψyi. Using these relations, we

get
ψR1yi = ψR

′m
1 yi = R

′m
2 ψyi = R2ψyi.

• By the definition of M ′
1 and M ′

2, we have R1ai = L′
1R

′−1
1 L′

1R
′
1ai. Since

Label is injective, R2ψai = L′
2R

′−1
2 L′

2R
′
2ψai. Using these relations, we get

ψR1ai = ψL′
1R

′−1
1 L′

1R
′
1ai = L′

2R
′−1
2 L′

2R
′
2ψai = R2ψai.

Putting it togehter, we proved that ψR1 = R2ψ, which implies that ψ is an
isomorphism M1 →M2. This completes the proof.

6.5 Irreducible maps on orientable surfaces
In this section, we provide an algorithm computing the automorphism group
of irreducible oriented maps, with fixed Euler characteristic, in linear time. The
proof is split into three parts: negative Euler characteristic (Section 6.5.1), sphere
(Section 6.5.2), and torus (Section 6.5.3).

6.5.1 Surfaces of negative Euler characteristic
If the Euler characteristic χ is negative, the irreducible maps are exactly all the
uniform face-normal maps. We prove that the number of uniform face-normal
maps is bounded by a function of χ. Therefore, generators of the automorphism
group can be computed by a brute force approach. Note that the following lemma
does not require the underlying surface to be orientable, it only requires χ to be
negative.

Proposition 6.13. The number of uniform face-normal maps on a closed com-
pact surface S with Euler characteristic χ(S) < 0 is bounded by a function of
χ(S).

Proof. Babai noted in [9, Theorem 3.3] that the Hurwitz Theorem (see, e.g. [17]
or [85]) implies that the number of vertices of a uniform map M on S is at most
84|χ(S)|. By Theorem 6.8, the degree of a vertex of M is bounded by a function
of χ(S) as well. Therefore, the number of edges is also bounded by a function of
χ(S) and the theorem follows.

Corollary 6.14. Let M = (D,R,L) be a uniform face-normal map on an ori-
entable surface S with χ(S) < 0. Then generators of Aut(M) can be computed
in time f(χ(S))|D|, for some computable function f .

6.5.2 Sphere
By the definition of the reductions in Section 6.4, the irreducible spherical maps
are the two-skeletons of the five Platonic solids, 13 Archimedean solids, pseudo-
rhombicuboctahedron, prisms, antiprisms, cycles, dipoles, and bouquets.

122

In the first three cases, the automorphism group can be computed by a brute
force approach. We show that for (labeled) prisms, antiprisms, dipoles and bou-
quets, the problem can be reduced to computing the automorphism group of a
cycle.

Lemma 6.15. For every labeled map M which is a prism, an antiprism, a dipole
or a bouquet, there is a labeled cycle M ′ such that Aut+(M) ∼= Aut+(M ′). More-
over M ′ can be constructed in linear time.

Proof. The idea of the proof is to take the dual M∗ of M , if M is not a bouquet,
and apply the reductions defined in Section 6.4, following the order defined by
the priorities.

Clearly, the dual of a dipole is a cycle. The dual of an n-prism, is an n-
bipyramid. It is easy to see that an n-bipyramid, for n ̸= 4, is reduced to a
3n-dipole by applying constant number of reductions reduction. Similarly, the
dual of an n-antiprism, for n ̸= 3, is again a reducible map, which is reduced
by applying a constant number of reductions to a 2n-dipole. Every prism and
antiprism is therefore transformed to a labeled cycle.

Concerning bouquets, we transform every n-bouquet to an n-cycle based on
the same set darts. Formally, let Bn = (D,R,L, ℓ) be a bouquet. We set D′ =
D, L′ = L and ℓ′(x) = Label(s, ℓ(x)). By definition the rotation consists of
a single cycle of the form R = (x0, x

−1
0 , x1, x

−1
1 , . . . , xn−1, x

−1
n−1). We set R′ =∏︁d−1

i=0 (x−1
i , xi+1).

It remains to show how to test isomorphism of two labeled maps whose un-
derlying graphs are cycles. In order to make the exposition simpler, we transform
the labeling of darts ℓ : D → U of a labeled cycle M to a labeling of vertices.
For every vertex v of M , there are two darts x, y incident with it, and we have
Rv = (x, y). The pair (ℓ(x), ℓ(y)) can be considered as a new label of the vertex
v. Thus, the problem reduces to testing isomorphism of two vertex-labeled cycles.

Automorphisms and isomorphisms of labeled cycles. In this section we
modify the algorithm which was given by Hopcroft and Wong [94] to test isomor-
phism of cycles. This algorithm is an essential tool, since we apply it several times
as a black box in the rest of the text. In particular, we use it in the algorithm for
uniform toroidal maps (the next subsection) and in the algorithm for computing
the centralizer of a fixed-point-free involution in a certain 2-generated group; see
Lemma 6.29. The latter application is necessary to compute the generators of
the automorphism group of a map on the projective plane or on the Klein bottle.

Given cycles X1 and X2 with vertex-labelings ℓ1 and ℓ2, respectively, the
following algorithm tests if there is an isomorphism ψ : V (X1) → V (X2) such
that ℓ1(v) = ℓ2(ψ(v)), for every v ∈ V (X1). For simplicity, we assume that,
at the start, if Xi, for i = 1, 2, has k different labels, for some k ≤ |V (Xi)|,
then the labels are the integers 1, . . . , k and the same coding is used in X1 and
X2. Moreover, we fix an orientation of X1 and X2, so that for every vertex v its
successor suc(v) is well defined.

• Step 1: We find an arbitrary vertex v1 in X1, with ℓ1(v1) ̸= ℓ1(suc(v1)). If
no such vertex exists in X1, then ℓ1 is constant in which case it is easy to

123

check if X1 ∼= X2. Otherwise, we find v2 ∈ V (X2) with ℓ1(v1) = ℓ2(v2) and
ℓ1(suc(v1)) = ℓ2(suc(v2)). If no such vertex v2 exists, then X1 and X2 are
not isomorphic.

• Step 2: For i = 1, 2, we construct the set Si of all vertices u of Xi with
ℓi(u) = ℓi(vi) and ℓi(suc(u)) = ℓi(suc(vi)); see Figure 6.4. The sets S1 and
S2 form independent sets in X1 and X2, respectively. Every isomorphism
maps S1 bijectively to S2. If |S1| ≠ |S2|, then X1 and X2 are not isomorphic.

• Step 3: For every v ∈ Si (i = 1, 2), we join v to suc(suc(v)) and remove
suc(v). We relabel every vertex in Si by k, where k is the smallest unused
integer; see Figure 6.4.

• Step 4: We find an arbitrary vertex v1 ∈ S1 with ℓ1(v1) ̸= ℓ1(suc(v1)). If
no such vertex exists, then we have S1 = V (X1) and ℓ1 is constant. It is
easy to check if X1 ∼= X2. Otherwise, we find v2 ∈ S2 with ℓ2(v2) = ℓ1(v)
and ℓ2(suc(v2)) = ℓ2(suc(v)). If no such vertex exists, then X1 and X2 are
not isomorphic, and we stop.

• Step 5: For i = 1, 2, we remove from Si every u with ℓi(suc(u)) ̸=
ℓi(suc(vi)). The sets S1 and S2 form independent sets in X1 and X2, re-
spectively. If |S1| ̸= |S2|, then X1 and X2 are not isomorphic and we stop.
We go to Step 3.

By X−1
i we denote the labeled cycle Xi (i = 1, 2) with the reverse orientation.

Lemma 6.16. Applying the above algorithm twice for the inputs (X1, X2) and
(X1, X

−1
2) with X2 taken with the chosen and the reverse orientation, it is decided

in linear time if two labeled cycles X1 and X2 are isomorphic as oriented maps.

Proof. Let X ′
1 and X ′

2 be the graphs obtained from X1 and X2 after applying
Step 3, respectively. It suffices to show that X1 ∼= X2 if and only if X ′

1
∼= X ′

2.
Let Ti be the set of clockwise neighbors of Si, for i = 1, 2. Formally, Ti =

{u ∈ V (Xi) : u = suc(v), for v ∈ Si}. The subgraph of Xi induced by Si∪Ti is a
matching such that all the vertices in Si have the same label and all the vertices
in Ti have the same label. Every orientation preserving isomorphism ψ : X1 → X2
satisfies ψ(S1) = S2 and ψ(T1) = T2. We have V (X ′

i) = V (Xi) \ Ti. Therefore,
the restriction of ψ to V (X ′

1) is an isomorphism from X ′
1 to X ′

2.
On the other hand, if ψ′ : X ′

1 → X ′
2 is an isomorphism, then let Ui be the set

of clockwise neighbors of Si in X ′
i. We have ψ′(S1) = S2. Note that we assume

that S1 and S2 are updated before applying Step 4. Since |Si| = |Ti|, we can
easily extend ψ′ to an isomorphism ψ : X1 → X2.

1
2

1

2

3
1

2

1

2

3
4

4

3
4

4

3
4

5

4

5

6

6

Figure 6.4: Illustration of the reduction procedure for cycles.

124

We need to execute the algorithm twice to check whether X1 is isomorphic
X2, or to a 180-degree rotation of X2. More precisely, Iso(X1, X2) checks map
for the existence of map isomorphisms taking the inner face of X1 onto the inner
face X2, while Iso(X1, X

−1
2) checks the existence of a map isomorphisms taking

the inner face of X1 onto the outer face of X2.

Lemma 6.17. The complexity of the above algorithm is O(n), where n is the
number of vertices of X1 and X2.

Proof. Steps 1–2 take O(n) time. Each iteration of Steps 3–5 takes O(|S1|+ |S2|)
time. However, since we remove |S1| vertices from X1 and |S2| vertices from X2
in each iteration of Step 3, the overall complexity is O(n).

Corollary 6.18. For a labeled cycle X on n vertices, there is a O(n)-time algo-
rithm that computes the generator of the cyclic group of rotations of X.

The results of this subsection are summarized by the following.

Theorem 6.19. If M = (D,R,L) is an irreducible spherical map, then the gen-
erators of Aut(M) can be computed in time O(|D|).

6.5.3 Torus

By definition, the toroidal irreducible maps are uniform face-normal maps. The
universal covers of uniform toroidal maps are uniform tilings (infinite maps with
finite vertex and face degrees) of the Euclidean plane. There are 12 of such tilings;
see [86, page 63]. Their local types are (3, 3, 3, 3, 3, 3), (4, 4, 4, 4), (6, 6, 6), 2 ×
(3, 3, 3, 3, 6), (3, 3, 3, 4, 4), (3, 3, 4, 3, 4), (3, 4, 6, 4), (3, 6, 3, 6), (3, 12, 12), (4, 6, 12),
and (4, 8, 8). One type occurs in two forms, one is the mirror image of the other.
Each of these tilings T gives rise to an infinite family of toroidal uniform maps
as follows. It is well-known that Aut+(T) is isomorphic either to the triangle
group ∆(4, 4, 2) or to ∆(6, 3, 2). Each of these contains an infinite subgroup H
of translations generated by two shifts. Every finite uniform toroidal map of
the prescribed local type can be constructed as the quotient T/K, where K is a
subgroup of H of finite index.

From uniform face-normal toroidal maps to homogeneous maps. We
show that each of the uniform maps can be reduced to one of the two homogeneous
types {4, 4} and {6, 3}, while preserving the automorphism group.

Lemma 6.20. For every labeled uniform toroidal map M , there is a labeled ho-
mogeneous map M ′ of type {4, 4} or {6, 3} such that Aut+(M) ∼= Aut+(M ′).
Moreover M ′ can be constructed in linear time.

Proof. The idea of the proof is to take the dual M∗ of M and apply the reductions
defined in Section 6.4. It is straightforward to check by a case-by-case analysis
that in each case M∗ is reduced to a homogeneous map.

125

︸ ︷︷ ︸
r

t︷ ︸︸ ︷

x

x

x

s

e1

e2e3

e4

e5 e6

v0v0

Figure 6.5: The toroidal triangulation T (6, 4, 2). Its parameter list is the cyclic
sequence of parameters (6,4,2), (12,2,6), (12,2,4), (6,4,4), (12,2,6), (12,2,10). The
stabilizers of the automorphism group action are trivial and its full automorphism
group is isomorphic to Z6 × Z4.

Homogeneous maps on torus. First, we describe how to compute the gen-
erators of the automorphism group of unlabeled homogeneous toroidal maps.
There are three possible homogeneous types of such maps: {6, 3}, {4, 4}, and
{3, 6}. They admit a simple description in terms of three integer parameters
r, s, t where 0 ≤ t < r. The 4-regular quadrangulation Q(r, s, t) is obtained
from the (r + 1)× (s+ 1) grid with underlying graph Pr+1□Ps+1 (the Cartesian
product of paths on r + 1 and s + 1 vertices) by identifying the “leftmost” path
of length s with the “rightmost” one (to obtain a cylinder) and identifying the
bottom r-cycle of this cylinder with the top one after rotating the top clockwise
for t edges. In other words, the quadrangulation Q(r, s, t) is the quotient of the
integer grid Z□Z determined by the equivalence relation generated by all pairs
(x, y) ∼ (x+ r, y) and (x, y) ∼ (x+ t, y + s).

This classification can be derived by considering appropriate fundamental
polygon of the universal cover (which is isomorphic to the tessellation of the
plane with unit squares). This structure was known to geometers (Coxeter and
Moser [45]). In graph theory, this was observed by Altschuler [3]; several later
works do the same (e.g. [154]). Our notation comes from Fisk [66], who only con-
sidered 6-regular triangulations. The 6-regular triangulation T (r, s, t) is obtained
from Q(r, s, t) by adding all diagonal edges joining (x, y) with (x+ 1, y+ 1). And
the 3-regular hexangulations H(r, s, t) of the torus are just duals of triangulations
T (r, s, t).

The parameters r, s, t depend on the choice of one of the edges incident with a
chosen reference vertex v0. Let us describe the 6-regular case T (r, s, t) first. Let
the clockwise order of the edges around v0 be e1, e2, . . . , e6. We start with e1 and
take the straight-ahead walk (when we arrive to a vertex u using an edge e, we
continue the walk with the opposite edge in the local rotation around u). When
we come back for the first time at the vertex we have already traversed, it can be
shown that this vertex must be v0 and that we arrive through the edge e4, which

126

is opposite to the initial edge e1. This way the straight-ahead walk closes up into
a straight-ahead cycle C = v0v1 . . . vr−1v0. We let r be the length of this cycle.
Now, let us start a straight-ahead walk from v0 with the initial edge e2. Let s
be the number of steps on this walk until we reach a vertex, say vt (0 ≤ t < r),
on the cycle C, for the first time. This determines the three parameters r, s, t
and it can be shown that the map is isomorphic to the map T (r, s, t) described
above. The 4-regular case is the same except that we do not have the directions
of the edges e3 and e6. See Figure 6.5 for an example. In particular, this proves
the well-known fact that T (r, s, t) is vertex-transitive, for the abelian group ⟨a, b⟩
such that ra = 0 and ta = sb.

Labeled homogeneous maps on the torus. We give an algorithm that
computes the generators of the automorphism groups of a labeled homogeneous
toroidal map M of type {4, 4} or {3, 6}. For technical reasons, we assume that
the map M is vertex-labeled instead of dart-labeled. This transformations can
be done easily by, for a given vertex, encoding the lables of the outgoing darts
into the vertex. The following lemma describes some important properties of
Aut+(M).

Lemma 6.21 ([152]). Let M be a toroidal map of type {4, 4} or {6, 3}. The
orientation-preserving automorphism group of a labeled map M is a semidirect
product T ⋊ H, where T is a direct product of two cyclic groups, and |H| ≤ 6.
Moreover, the action of T is regular on the vertices of M .

Since the order of H is bounded by a constant, it takes linear time to check
whether every element of H is a label-preserving automorphism. The main dif-
ficulty is to find T . The subgroup T is generated by α and β, where α is the
horizontal, and β is the vertical shift by the unit distance. Now the meaning of
the parameters r, s, t is the following: |α| = r, αt = βs, and s is the least power of
β such that βs ∈ ⟨α⟩. The following lemma shows that T can always be written
as a direct product of two cyclic groups.

Lemma 6.22. There exists δ and γ such that T = ⟨δ⟩ × ⟨γ⟩. Moreover, δ and γ
can be computed in time O(rs).

Proof. Using the Smith Normal Form, we have that T ∼= Zm × Zn, where m =
gcd(r, t, s) and n = rs/ gcd(r, t, s). Since t divides r, we have m = gcd(t, s). The
respective generators of T can be chosen to be δ = α

t
mβ

−s
m and γ = β

t
m .

Lemma 6.22 can be viewed as a transformation of the shifted grid G to the
orthogonal grid G⊥. Note that the underlying graph may change, but both G
and G⊥ are Cayley graphs based on the group T , therefore, the vertex-labeling
naturally transfers. Thus, we may assume that t = 0 and T = ⟨α⟩×⟨β⟩ ∼= Zr×Zs.
We need to compute generators of the label-preserving subgroup of T .

Subgroups of Zr × Zs. From now on, we assume that we are given a cyclic
orthogonal grid G of size rs, which is graph with vertices identified with (i, j) ∈ G,
where G = Zr × Zs. For every (i, j), there is an edge between (i, j) and (i + 1
mod r, j), and between (i, j) and (i, j + 1 mod s). Moreover, we are given an

127

integer-labeling ℓ of the vertices of G. Clearly, G determines the ℓ-preserving
subgroup H of G, namely

H = {(x, y) : ∀(i, j) ∈ G, ℓ(i, j) = ℓ(i+ x, j + y)}.

The goal is to find the generators of H in time O(rs).
We give a description of any subgroup of the direct product of G that is suit-

able for our algorithm. First, we define four important mappings. The two projec-
tions π1 : G→ Zr and π2 : G→ Zs are defined by π1(x, y) = x and π2(x, y) = y,
respectively. The two inclusions ι1 : Zr → G and ι2 : Zs → G are defined by
ι1(x) = (x, 0) and ι2(y) = (0, y), respectively.

Lemma 6.23. Let G = Zr×Zs for r, s ≥ 1, and let H be a subgroup of G. Then
there are a, c ∈ Zr and b ∈ Zs such that

H = {(ia+ jc, jb) : i, j ∈ Z} = ⟨(a, 0), (c, b)⟩,

where ⟨a⟩ = ι−1
1 (H), ⟨b⟩ = π2(H), and c < a is the minimum integer such that

(c, b) ∈ H.

Proof. Note that ι−1
1 (H) is a subgroup of Zr, i.e., there is a ∈ Zr such that

⟨a⟩ = ι−1
1 (H). Similarly, π2(H) is a subgroup of Zs, i.e., there is b ∈ Zs such that

⟨b⟩ = π2(H). Finally, let c ∈ Zr be minimum such that (c, b) ∈ H. We prove that
H = {(ia+ jc, jb) : i, j ∈ Z}.

Clearly, for every i, j ∈ Z, we have

(ia+ jc, jb) = (ia, 0) + (jc, jb) = i(a, 0) + j(c, b).

By the definition ι1 and by the definition of c, we have (a, 0), (c, b) ∈ H, and
hence i(a, 0) + j(c, b) ∈ H.

On the other hand, let (x, y) ∈ H. Then π2(x, y) = y ∈ Zs, hence there is
j such that y = jb. By the definition of c, we have (c, b) ∈ H, and therefore,
(x− jc, 0) = (x, y)− j(c, b) ∈ H. By the definition of ι1, we have ι−1

1 (x− jc, 0) =
x− jc ∈ Zr. There exits i such that x− jc = ia. We obtain (x, y) = (ia+ jc, jb).

Finally, we show that c < a. Dividing c by a, we get c = ka + r, for some
k ≥ 0 and 0 ≤ r < a. However,

(r, b) = (c− ka, b) = (c, b)− k(a, 0) ∈ H.

Thus, by minimality of c, we obtain c < a.

This description suggests an algorithm to find the generators of the given
subgroup H of Zr × Zs. In our setting, the subgroup H is given on the input by
a labeling function ℓ, defined on the vertices of the r × s orthogonal grid. The
subgroup H is the ℓ-preserving subgroup of Zr × Zs.

To compute the generators of H, it suffices, by Lemma 6.23, to determine
a, c ∈ Zr and b ∈ Zs such that ⟨a⟩ = ι−1

1 (H), ⟨b⟩ = π2(H), and c is the smallest
integer such that (c, b) ∈ H. Then H = ⟨(a, 0), (c, b)⟩.

Lemma 6.24. There is an O(rs)-time algorithm which computes the integers
a, b, c such that ι−1

1 (H) = ⟨a⟩, π2(H) = ⟨b⟩ and c < a is the smallest integer such
that (c, b) ∈ H.

128

Proof. First, we compute a in time O(rs). Let X1, . . . , Xs be the horizontal
cycles of length r. For each Xj, we compute in time O(r) the integer rj such that
Aut(Xj) ∼= Zrj

. We put a := r/r′, where r′ = gcd(r1, . . . , rs). We need to argue
that ι−1

1 (H) = ⟨a⟩.
Let (x, 0) ∈ H. There exist integers ij, for j = 1, . . . , s, such that x = ijaj =

ijr/rj. We put i := gcd(i1, . . . , is). Then x = ir/r′ = ia ∈ ⟨a⟩.
Conversely, let x = ia. By the definition of a, we have (a, 0) ∈ H. Then for

every x′, y′, we have

ℓ(x′ + x, y′) = ℓ(x′ + ia, y′) = ℓ(x′ + (i− 1)a, y′) = · · · = ℓ(x′ + a, y′) = ℓ(x′, y′),

i.e., (x, 0) ∈ H.
Before, dealing with b and c, we first reduce the problem to a special case,

where we have a grid G ′ satisfying that the labeling ℓ of any horizontal cycle X ′
j

of G ′ is a rotation of the labeling of the cycle X ′
0. We do this as follows. For a

horizontal cycle Xj of G let Σj denote the string

ℓ((0, j)), . . . , ℓ((r − 1, j)).

We say that Xj and Xj′ are equivalent if Σj is a cyclic rotation of Σj′ . We assign
and integer label to every Xj such that Xj and Xj′ have the same label if and only
if they equivalent. This defines an auxiliary labeled cycle, for which we compute
the integer s′ such that its automorphism group is isomorphic to Zs′ . We define
new grids G ′

i consisting of cycles X0+i, Xŝ+i, X2ŝ′+i, . . . , X(s′−1)ŝ+i, for ŝ = s/s′

and i = 0, . . . , s′ − 1. Each G ′
i is a grid of size rŝ.

Now, for every fixed i, we compute bi and ci such that Hi = ⟨(a, 0), (ci, bi)⟩
is the automorphism group of G ′

i in time O(rŝ). Since ⟨bi⟩ is a subgroup of Zŝ,
we may assume that b divides ŝ. Given bi, there exits a unique ci < a such that
ℓ(ci, bi) = ℓ(0, 0). Thus, it is possible to identify the set of candidate pairs (ci, bi)
in time O(rŝ). Finally, the group H = ⋂︁s′

i=0 Hi is the automorphism group of
G. To compute b and c such that H = ⟨(c, b)⟩, we put b = lcm(b0, . . . , bs′) and
c = lcm(c0, . . . , cs′).

Given (ci, bi), we claim that it can be checked in time O(ŝ) whether the group
⟨(ci, bi)⟩ is ℓ-preserving in G ′

i. Consider the vectors

vj = (ℓ(jci, jbi), ℓ(jci, jbi + 1), . . . , ℓ(jci, (j + 1)bi − 1)),

for j = 0, . . . , ŝ/bi. Now, the group ⟨(ci, bi)⟩ is ℓ-preserving in G ′
i if and only if all

these vectors are equal. To verify this this, we need O(bŝ/b) = O(ŝ) comparisons.
The number of all candidate pairs is at most the number of divisors of O(ŝ).

Thus the total number of comparisons is∑︂
d|ŝ
O(ŝ) = ŝ

∑︂
d|ŝ
O(1) = O(ŝ2) = O(rŝ).

The last equality holds if we assume that s ≤ r, which is always possible without
loss of generality. Moreover, we do this for every i = 0, . . . , s′− 1, thus, the total
complexity is O(s′rŝ) = O(s′rs/s′) = O(rs).

The results of this subsection are summarized by the following.

Theorem 6.25. If M = (D,R,L, ℓ) is a uniform face-normal labeled toroidal
map, then the generators of Aut(M) can be computed in time O(|D|).

129

6.6 Non-orientable surfaces
For a map M on a non-orientable surface S, we reduce the problem of com-
puting the generators of Aut(M) to the problem of computing the generators of
Aut+(˜︂M), for some orientable map ˜︂M . In particular, the map ˜︂M is the antipodal
double cover of M .

Given a map M = (F, λ, ρ, τ) on a non-orientable surface of genus γ, we
define the antipodal double cover ˜︂M = (D,R,L) by setting D := F , R := ρτ ,
and L := τλ. Since M is non-orientable, we have ⟨R,L⟩ = ⟨λ, ρ, τ⟩, so ⟨R,L⟩ is
transitive and ˜︂M is well-defined. For more details on this construction see [131].
We note that ˜︁χ = 2χ, where ˜︁χ and χ is the Euler characteristic of the underlying
surface of ˜︂M and M , respectively.

Lemma 6.26. We have Aut(M) ≤ Aut+(˜︂M).

Proof. Let φ ∈ Aut(M). Then we have Rφ = (ρτ)φ = ρφτφ = ρτ = R and
Lφ = (τλ)φ = τφλφ = τλ = L.

Lemma 6.27. We have Aut(M) = {φ ∈ Aut+(˜︂M) : φτ = τφ}.

Proof. Let φ ∈ Aut+(˜︂M). We have φRφ−1 = R and φLφ−1 = L. By plugging in
R = ρτ and L = τλ, we obtain

φ(ρτ)φ−1 = ρτ and φ(τλ)φ−1 = λτ.

From there, by rearranging the left-hand sides of the equations, we get

(φρφ−1)(φτφ−1) = φ(ρτ)φ−1 = ρτ and (φτφ−1)(φλφ−1) = φ(τλ)φ−1 = τλ.

Finally, we obtain

φρφ−1 = ρτ(φτφ−1) and φλφ−1 = (φτφ−1)τλ.

If φ ∈ Aut(M), then, in particular, it commutes with τ . On the other hand, if φ
commutes with τ , then the last two equations imply that it also must commute
with ρ and λ, i.e., φ ∈ Aut(M).

The previous lemma suggest an approach for computing the generators of the
automorphism group of M .

Lemma 6.28. Let M = (F, λ, ρ, τ) be a map on a non-orientable surface of genus
γ > 2. Then it is possible to compute the generators of Aut(M) in time f(γ)|F |.

Proof. First, we construct ˜︂M in time O(|F |). Using the algorithm from Sec-
tions 6.4 and 6.5, we construct the associated labeled uniform map M and com-
pute the generators of Aut+(˜︂M).

Suppose that γ > 2. By Riemann-Hurwitz theorem, we have |Aut+(M)| ≤
84(g − 1), where g = γ − 1. For each φ ∈ Aut+(M), we construct the unique
extension φ ∈ Aut+(˜︂M) and check whether φτφ−1 = τ in time O(|F |). The
previous Lemma 6.27 states that Aut(M) consists exactly of those φ.

130

To proceed with maps on the projective plane and Klein bottle, we define the
action diagram for a permutation group G ≤ Sym(Ω) with a generating set S.
To every generator g ∈ S we assign a unique color cg. The action diagram A(G)
of G is an edge-colored oriented graph with the vertex set Ω. There is an oriented
edge x→ y of color cg if and only gx = y. We first prove the following technical
lemma.

Lemma 6.29. Let C ≤ Sym(Ω) be a semiregular cyclic group and let τ ∈ Sym(Ω)
be fixed-point-free involution. Then there is an algorithm which finds the subgroup
L ≤ C centralizing τ in time O(|Ω|).

Proof. Let C = ⟨φ⟩, where |φ| = n. It is sufficient to find the smallest m > 0
such that φm commutes with τ . Then the group A = ⟨τ, φm⟩ is abelian of order
n/m or 2n/m. Since both φ and τ are fixed-point-free permutations, the orbits
of A are either of size n/m, or of size 2n/m and the respective action diagrams
are either Möbius ladders, or ladders (prisms).

Step 1. We first determine the largest cyclic subgroup K ≤ ⟨φ⟩ satisfying the
property that the orbits of ⟨K, τ⟩ have size |K|, or 2|K|. If this is the case, then
τ matches an orbit O of K to a unique orbit τ(O), where τ(O) = O may happen.

The group ⟨φ⟩ acts semiregularly on Ω and hence there are exactly |Ω|/n
orbits O1, . . . , O|Ω|/n of size n. We find the smallest m′ > 0 such that for every
i = 1, . . . , |Ω|/n, and every x ∈ Oi, there is j such that {τ(x), τφm′(x)} ⊆ Oj.
Let Xi := A(⟨φ⟩, Oi), for i = 1, . . . , |Ω|/n. Note that each Xi is an oriented cycle,
a Cayley graph of a cyclic group. We further label the vertices of Xi such that
ℓi(x) = j if τx ∈ Oj.

For each labeled cycle Xi, we use the algorithm of Section 6.5 to compute
the integer ki such that Aut+(Xi) ∼= Zki

. We have Aut+(Xi) = ⟨φmi⟩, where
mi := n/ki, for i = 1, . . . , |Ω|/n. Each φmi is label-preserving on Xi, i.e., for
every x ∈ Oi, ℓ(x) = ℓφmi(x). By the definition of ℓ, the points τ(x) and τφmi(x)
belong to the same orbit of φ. Clearly,

⟨φm′⟩ =
|D|/n⋂︂
i=1
⟨φmi⟩.

This implies that m′ = n/k, where k = gcd(k1, . . . , k|Ω|/n).
Step 2. We find m such that L = ⟨φm⟩ commutes with τ . Clearly, L is a

subgroup of K = ⟨α⟩, where α = φm′ . Let O′
1, . . . , O

′
|Ω|/k be the orbits of K, and

we define X ′
i := A(⟨φm′⟩, O′

i), for i = 1, . . . , |D|/k. From the definition of m′, it
follows that τ(O′

i) = O′
j, for some j. In other words, τ defines a perfect matching

between the points of O′
i and O′

j. We distinguish two cases.

• τ(O′
i) = O′

i. We identify the points of Oi with Zk = {0, . . . , k − 1}. For a
point x ∈ Oi, with |x−τ(x)| = k/2, we define ℓ(x) := k/2 and ℓτ(x) := k/2.
For a point x ∈ Oi, with |x − τ(x)| < k/2, we define ℓ(x) := +|x − τ(x)|
and ℓτ(x) := −|x− τ(x)|.

• τ(O′
i) = O′

j, for i ̸= j. We identify the points of O′
i ∪ O′

j with Zk ∪ Zk =
{0, . . . , k−1}∪{0, . . . , k−1} as follows. First, we identify O′

i with Zk. Then,
for x ∈ O′

i identified with 0, we identify τ(x) with 0, and extend uniquely
using the action of (Zk,+). Similarly, as in the previous case we define a

131

labeling ℓ of Oi and Oj. For a point x ∈ Oi, with |x−τ(x)| = k/2, we define
ℓ(x) := k/2 and ℓτ(x) := k/2. For a point x ∈ Oi, with |x − τ(x)| < k/2,
we define ℓ(x) := +|x− τ(x)| and ℓτ(x) := −|x− τ(x)|.

We use the algorithm of Section 6.5 to compute the integer k′
i such that

Aut+(Xi) ∼= Zk′
i
, for i = 1, . . . , |Ω|/k. Let m′

i := k/k′
i. By the definition of ℓ, we

have, for every x ∈ Oi,

ℓ(x) = ℓαm′
i(x),

±|x− τ(x)| = ±|αm′
i(x)− ταm′

i(x)|.

This exactly means that ταm′
i(x) = αm′

iτ(x). Finally, L = ⟨φm⟩ is the intersection
|Ω|/k⋂︂
i=1
⟨αm′

i⟩.

This implies that m = k/ gcd(k′
1, . . . , k

′
|Ω|/k).

Both Step 1 and Step 2 can be computed in linear time. In Step 1, we have
|Ω|/n cycles of size n, The time spent by the algorithm of Section 6.5 on each
of the cycles is O(|Ω|/n). The greatest common divisor of |Ω|/n numbers in the
interval [1, |Ω|] can be computed in time O(|Ω|). Thus the overall complexity of
Step 1 is O(|Ω|). Note that exactly the same argument works for Step 2. This
completes to proof for Aut(˜︂M) ∼= Zn.

Lemma 6.30. For a map M = (F, λ, ρ, τ) on the projective plane, it is possible
to compute the generators of Aut(M) in time O(|F |).

Proof. Note that in this case ˜︂M is a spherical map. If the reduced map M from˜︂M does not belong to one of the infinite families, then we may use the same
approach as in the case when γ > 2. Otherwise, M is one of the following:
bouquet, dipole, cycle, prism, antiprism. We only deal with the cycle, since
the other cases are reduced to it. If M is a cycle, then we have that either
Aut+(M) ∼= Aut+(˜︂M) ∼= Dn or Aut+(M) ∼= Aut+(˜︂M) ∼= Zn, for some n.

First, suppose that Aut+(˜︂M) ∼= Zn. Let φ be the generator of Aut+(˜︂M) ,
i.e., ⟨φ⟩ = Aut+(˜︂M) and φn = id. By Lemma 6.26, Aut(M) ≤ Aut+(˜︂M) and
therefore, Aut(M) is also a cyclic group. By Lemma 6.27, it is sufficient to find
the smallest m > 0 such that φm commutes with τ . By Lemma 6.29, this can be
done in time O(|D|).

Suppose that Aut(˜︂M) ∼= Dn. It is known that Dn can be written as the
semidirect product4 Zn ⋊ Z2, i.e., Dn has two generators, one of order n and the
other of order 2. There are φ, ψ ∈ Aut+(˜︂M) such that φn = id, ψ2 = id, and
⟨φ, ψ⟩ = Aut+(˜︂M). By Lemma 6.26, Aut(M) ≤ Aut+(˜︂M), i.e., there is k dividing
n such that Aut(M) ∼= Dk or Aut(M) ∼= Zk. To check whether ψ ∈ Aut(M),
by Lemma 6.27, it suffices to check if ψτψ−1 = τ , which can be done in linear
time. To investigate the cyclic subgroup ⟨ψ⟩, we proceed as in the cyclic case
above.

Lemma 6.31. Let M = (F, λ, ρ, τ) be a map on the Klein bottle. Then it is
possible to compute the generators of Aut(M) in time O(|F |).

4A group G is a semidirect product of N and H if N, H ≤ G, N ∩ H = {1}, and N is a
normal subgroup of G. We write G = N ⋊ H.

132

Proof. We form the antipodal double-cover ˜︂M = (D,R,L) of M , which is in this
case a toroidal map, and compute the generators of G = Aut+(˜︂M) = T ⋊ Gv,
where T = ⟨φ⟩ × ⟨ψ⟩ and Gv is the vertex-stabilizer with |Gv| ≤ 6. Further,
we assume that |φ| = a and |φ| = b. By Lemma 6.27, we need to determine
the subgroup H of G centralized by τ . For H ∩ Gv, this is done by brute-force,
checking the commutativity with τ for every element individually. We show how
to find in linear time the generators of K = H ∩ T . By Lemma 6.29, we find
minimal m > 0 and n > 0 such that φm and ψn commute with τ .

By definition, every element of ⟨φm, ψn⟩ = ⟨φm⟩ × ⟨ψn⟩ commutes with τ .
Conversely, let π = φkψℓ ∈ T be such that τπτ−1 = π. By plugging in, we get

τφkψℓτ−1 = τφτ−1τψℓτ−1 = φkψℓ.

Since T = ⟨φ⟩ × ⟨ψ⟩, the last equality holds only if τφkτ−1 = φk and τψℓτ = ψℓ.
It follows that φk ∈ ⟨φm⟩ and ψℓ ∈ ⟨ψn⟩, and consequently, π ∈ ⟨φm, ψn⟩.

The results of this subsection are summarized by the following.

Theorem 6.32. If M = (F, λ, ρ, τ) be a map on a non-orientable surface of
genus γ, then the generators of Aut(M) can be computed in time O(|F |).

6.7 Complexity of the algorithm and summary
In this section, we investigate the complexity of various parts of our algorithm.
We argue that it runs in time linear in the size of the input, i.e., in time O(|D1|+
|D2|). We show a representation of the function ℓ such that ℓ(x) and ℓ(y) can be
compared in constant time. We also describe an implementation of the function
Label that computes the new label in time proportional to the number of its
arguments. At the end, we give a summary of the whole algorithm.

Reductions. The data structure to find next reduction is a list of queues, the
number of which is bounded by a function of genus. Every time a vicinity of a
vertex is modified, it is pushed to the correct queue. At each step we look at the
the first non-empty queue.

The only difficulty is with updating the local type for every vertex. If there
is a large face f of size O(v(M)) incident to a vertex of small degree, we cannot
afford to update the local type of every vertex incident to f , since the degree of
f may decrease just by one. To overcome this obstacle we use another trick.

We define the vertex-face incidence map Γ(M) of M which is a bipartite
quadrangular map associated to M . Its vertices are the vertices and centers of
faces of M . For every vertex v ∈ V (M) and face-center f ∈ F (M) of a face
incident to v there is an edge joining v to f . Note that f can be multiply incident
to v, for each such incidence there is an edge in Γ(M). The map Γ(M) can be
alternatively obtained as the dual of the medial map. Every reduction easily
translates to a reduction in Γ(M). We update Γ(M) after every elementary
reduction. The important property of Γ(M) is that if v is a vertex of M , then
cyclic vector of degrees of the neighbours of v in Γ(M) is exactly the local type
of v in M . To update the local type of a vertex after a reduction it suffices to
look at its cyclic vector of degrees of its neighbours in Γ.

133

7

5

0 0 0

2

0 0

T1 7

5

0 0 0

2

0 0

7

5

0 0 0

2

0 0

T2 7

5 3 4

0 0 0 0

T3

7 5 0 0 0 0 0 0 5 2 0 0 0 0 2 7

5 2 0 0 0 0 0 0 2 7

5 3 0 0 0 0 3 4 0 0 4 7

T1

T2

T3

Figure 6.6: Labels represented as planted trees together with the associated prefix
tree.

Labels. In Section 6.4, we were using the function ℓ as the labeling of a map
M and the injective function Label(t, a1, . . . , am), where t ∈ N denotes the step
and every ai is a label, for constructing new labels.

First, we describe the implementation of labels, i.e., the images of ℓ. Every
label is implemented as a rooted planted tree with integers assigned to its nodes.
A rooted planted tree is a rooted tree embedded in the plane, i.e., by permuting
the children of a node we get different trees; see Figure 6.6. Every planted tree
with n nodes can be uniquely encoded by a 01-string of length 2n. Further, we
require that the children of every node N have smaller integers than their nodes.
This type of tree is also called a maximum heap. Such a tree can be uniquely
encoded by a string (sequence) of integers.

Now we define Label. The integer t represents the current step of the algo-
rithm. At the start, we have t = 0 and the map M has constant labeling – every
dart is labeled by a one-vertex tree with 0 assigned to its only vertex. Perform-
ing a reduction increments s by 1. For labels (rooted planted trees) a1, . . . , am,
the function Label(t, a1, . . . , am) constructs a new rooted planted tree with t in
the root and the root joined to the roots of a1, . . . , am. Clearly this function is
injective and can be implemented in the same running time as the corresponding
reduction.

Finally, we relabel homogeneous maps by integers. This is necessary mainly
for the case when the reductions terminate at cycles since in this case we need to
be able to compare labels in constant time. Suppose that we have two homoge-
neous maps M1 and M2 with the corresponding sets of labels T = {T1, . . . , Tk}
and T ′ = {T ′

1, . . . , T
′
k}. We construct bijections σ : T → {1, . . . , k} and σ′ : T ′ →

{1, . . . , k} such that after replacing Ti by σ(Ti) and T ′
i by σ′(T ′

i), we get isomor-
phic maps. To construct σ and σ′, we replace every tree in T and T ′ by a string
of integers. Then we find the lexicographic ordering of T and T ′ by constructing
two prefix trees (sometimes in literature called trie); see Figure 6.6. This lexico-
graphic ordering gives the bijections σ and σ′. Finally, we need to check if the
pre-images of every i under σ and σ′ are the same planted trees, otherwise the
maps are not isomorphic. This can be easily implemented in linear time.

Summary of the algorithm. The input of the whole algorithm is a non-
oriented map N = (F, λ, ρ, τ). First, we compute its Euler characteristic by

134

performing a breadth-first search. Then, we test whether it is orientable using
Theorem 6.7.

If N is orientable, then we construct the associated oriented maps M =
(D,R,L) and M−1 = (D,R−1, L). We use the algorithms from Section 6.4 and 6.5
to compute Aut+(M) and to find any φ ∈ Iso+(M,M−1). The group Aut(N) is
reconstructed from Aut+(M) and φ.

If N is not orientable, then we construct the associated antipodal double-
cover ˜︂M = (F.ρτ, τλ), which is an oriented map, and use again algorithms from
Section 6.4 and 6.5 to compute the generators of Aut+(˜︂M). Finally, we use the
algorithms from Section 6.6 to find the subgroup of Aut+(˜︂M) which is equal to
Aut(N).

Finding all isomorphisms between two maps. Our algorithm can be easily
adapted for the problem of finding all isomorphisms between two maps M1 and
M2, using the relation Iso(M1,M2) = Aut(M1)φ, where φ : M1 → M2 is an
arbitrary isomorphism. To compute φ, we find the reduction for the maps M1,
M2, and M−1

2 . Testing isomorphism of the reduced maps can be done by a brute-
force algorithm if they do not belong to an infinite family. Otherwise, the Euler
characteristic is non-negative. For the sphere or the projective plane, we apply
the algorithm of Section 6.5. For the torus and the Klein bottle, the described
algorithms can be easily adapted.

135

136

Bibliography
[1] Deniz Agaoglu and Petr Hlinený. Isomorphism problem for s d-graphs. In

Javier Esparza and Daniel Král’, editors, 45th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2020, August 24-
28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 4:1–4:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[3] A. Altshuler. Construction and enumeration of regular maps on the torus.
Discrete Math., 4:201–217, 1973.

[4] Vikraman Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda.
Colored hypergraph isomorphism is fixed parameter tractable. Algorith-
mica, 71(1):120–138, 2015.

[5] Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Ze-
man. Testing isomorphism of chordal graphs of bounded leafage is fixed-
parameter tractable. CoRR, abs/2107.10689, 2021.

[6] Albert Atserias and Elitza N. Maneva. Sherali-adams relaxations and indis-
tinguishability in counting logics. SIAM J. Comput., 42(1):112–137, 2013.

[7] Gilles Audemard, Säıd Jabbour, and Lakhdar Sais. Symmetry breaking
in quantified boolean formulae. In IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 2262–2267, 2007.

[8] L. Babai. Automorphism groups of planar graphs II. In Infinite and finite
sets (Proc. Conf. Keszthely, Hungary, 1973) Bolyai-North-Holland, pages
29–84, 1975.

[9] L. Babai. Vertex-transitive graphs and vertex-transitive maps. Journal of
graph theory, 15(6):587–627, 1991.

[10] L. Babai. Automorphism groups, isomorphism, reconstruction. In Handbook
of combinatorics (vol. 2), pages 1447–1540. MIT Press, 1996.

[11] László Babai. Graph isomorphism in quasipolynomial time [extended ab-
stract]. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 684–697. ACM, 2016.

[12] László Babai. Canonical form for graphs in quasipolynomial time: prelimi-
nary report. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1237–1246. ACM, 2019.

137

[13] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of
graphs with bounded eigenvalue multiplicity. In Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San
Francisco, California, USA, pages 310–324. ACM, 1982.

[14] K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial orders of dimension
2. Networks, 2:11–28, 1972.

[15] J. Bang-Jensen, J. Huang, and X. Zhu. Completing orientations of partially
oriented graphs. CoRR, abs/1509.01301, 2015.

[16] D. Bienstock and C. L. Monma. On the complexity of covering vertices by
faces in a planar graph. SIAM Journal on Computing, 17(1):53–76, 1988.

[17] N. L. Biggs and A. T. White. Permutation groups and combinatorial struc-
tures, volume 33. Cambridge University Press, 1979.

[18] G. Birkhoff. On groups of automorphisms. Rev. Un. Mat. Argentina,
11:155–157, 1946.

[19] Miklós Biro, Mihály Hujter, and Zs Tuza. Precoloring extension. i. interval
graphs. Discrete Mathematics, 100(1-3):267–279, 1992.

[20] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and planarity using PQ-tree algorithms. J. Comput. System
Sci., 13:335–379, 1976.

[21] Kellogg S Booth. Lexicographically least circular substrings. Information
Processing Letters, 10(4-5):240–242, 1980.

[22] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have
short interactive proofs? Inf. Process. Lett., 25(2):127–132, 1987.

[23] A. Bouchet. Reducing prime graphs and recognizing circle graphs. Combi-
natorica, 7(3):243–254, 1987.

[24] A. Bouchet. Unimodularity and circle graphs. Discrete Mathematics, 66(1-
2):203–208, 1987.

[25] Neal Brand. Isomorphisms of cyclic combinatorial objects. Discret. Math.,
78(1-2):73–81, 1989.

[26] A. Brodnik, A. Malnič, and R. Požar. Lower bounds on the simultane-
ous conjugacy problem in the symmetric group. In 4th annual Mississippi
Discrete Mathematics Workshop, 2015.

[27] A. Brodnik, A. Malnič, and R. Požar. Fast permutation-word multiplication
and the simultaneous conjugacy problem. arXiv preprint arXiv:1907.07889,
2019.

[28] R. P. Bryant and D. Singerman. Foundations of the theory of maps on
surfaces with boundary. The Quarterly Journal of Mathematics, 36(1):17–
41, 1985.

138

[29] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on
the number of variables for graph identification. In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, 30 October - 1 November 1989, pages 612–617. IEEE Computer
Society, 1989.

[30] P. J. Cameron. Permutation groups, volume 45. Cambridge University
Press, 1999.

[31] Maurice Chandoo. Deciding circular-arc graph isomorphism in parame-
terized logspace. In 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

[32] S. Chaplick, S. Felsner, U. Hoffmann, and V. Wiechert. Grid intersection
graphs and order dimension. Order, 35(2):363–391, 2018.

[33] S. Chaplick, R. Fulek, and P. Klav́ık. Extending partial representations of
circle graphs. CoRR, abs/1309.2399, 2015.

[34] Steven Chaplick, Martin Toepfer, Jan Voborńık, and Peter Zeman. On
h-topological intersection graphs. In Hans L. Bodlaender and Gerhard J.
Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd
International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-
23, 2017, Revised Selected Papers, volume 10520 of Lecture Notes in Com-
puter Science, pages 167–179. Springer, 2017.

[35] Steven Chaplick and Peter Zeman. Combinatorial problems on h-graphs.
Electron. Notes Discret. Math., 61:223–229, 2017.

[36] Steven Chaplick and Peter Zeman. Isomorphism-completeness for H-graphs.
https://kam.mff.cuni.cz/ pizet/gic.pdf, 2021.

[37] Gang Chen and Ilia Ponomarenko. Lectures on coherent configurations.
2019.

[38] C. J. Colbourn. On testing isomorphism of permutation graphs. Networks,
11(1):13–21, 1981.

[39] C. J. Colbourn and K. S. Booth. Linear times automorphism algorithms for
trees, interval graphs, and planar graphs. SIAM J. Comput., 10(1):203–225,
1981.

[40] C. J. Colbourn and K. S. Booth. Linear times automorphism algorithms for
trees, interval graphs, and planar graphs. SIAM J. Comput., 10(1):203–225,
1981.

[41] Charles J. Colbourn. On testing isomorphism of permutation graphs. Net-
works, 11(1):13–21, 1981.

[42] Charles J. Colbourn and Kellogg S. Booth. Linear time automorphism
algorithms for trees, interval graphs, and planar graphs. SIAM J. Comput.,
10(1):203–225, 1981.

139

[43] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The symmetries of
things. CRC Press, 2016.

[44] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Sim-
ple linear time recognition of unit interval graphs. Information Processing
Letters, 55(2):99–104, 1995.

[45] H. S. M. Coxeter and W. O. J. Moser. Generators and relations for discrete
groups, volume 14. Springer Science & Business Media, 2013.

[46] W.H. Cuningham and J. Edmonds. A combinatorial decomposition theory.
Canad. J. Math., 32:734–765, 1980.

[47] W.H. Cunningham. Decomposition of directed graphs. SIAM Journal on
Algebraic Discrete Methods, 3:214–228, 1982.

[48] William H Cunningham. Decomposition of directed graphs. SIAM Journal
on Algebraic Discrete Methods, 3(2):214–228, 1982.

[49] William H Cunningham and Jack Edmonds. A combinatorial decomposition
theory. Canadian Journal of Mathematics, 32(3):734–765, 1980.

[50] A. R. Curtis, M. C. Lin, R. M. McConnell, Y. Nussbaum, F. J. Soulignac,
J. P. Spinrad, and J. L. Szwarcfiter. Isomorphism of graph classes related to
the circular-ones property. Discrete Mathematics and Theoretical Computer
Science, 15(1):157–182, 2013.

[51] E. Dahlhaus. Parallel algorithms for hierarchical clustering and applications
to split decomposition and parity graph recognition. Journal of Algorithms,
36(2):205–240, 1998.

[52] H. de Fraysseix. Local complementation and interlacement graphs. Discrete
Mathematics, 33(1):29–35, 1981.

[53] H. de Fraysseix and P. O. de Mendez. On a characterization of gauss codes.
Discrete & Computational Geometry, 22(2):287–295, 1999.

[54] G. Di Battista and R. Tamassia. Incremental planarity testing. In Foun-
dations of Computer Science, 1989., 30th Annual Symposium on, pages
436–441. IEEE, 1989.

[55] G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-
trees. In International Colloquium on Automata, Languages, and Program-
ming, pages 598–611. Springer, 1990.

[56] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
on Computing, 25(5):956–997, 1996.

[57] B. Dushnik and E. W. Miller. Partially ordered sets. American Journal of
Mathematics, 63(3):600–610, 1941.

[58] Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J.
Graph Theory, 64(4):330–342, 2010.

140

[59] Sergei Evdokimov, Ilia Ponomarenko, and Gottfried Tinhofer. Forestal
algebras and algebraic forests (on a new class of weakly compact graphs).
Discrete Mathematics, 225(1-3):149–172, 2000.

[60] Sergei Evdokimov, Ilia N. Ponomarenko, and Gottfried Tinhofer. Forestal
algebras and algebraic forests (on a new class of weakly compact graphs).
Discret. Math., 225(1-3):149–172, 2000.

[61] Sergei Evdokimov, Ilia N. Ponomarenko, and Gottfried Tinhofer. Forestal
algebras and algebraic forests (on a new class of weakly compact graphs).
Discret. Math., 225(1-3):149–172, 2000.

[62] S. Even and A. Itai. Queues, stacks, and graphs. Theory of Machines and
Computation (Z. Kohavi and A. Paz, Eds.), pages 71–76, 1971.

[63] S. Even, A. Pnueli, and A. Lempel. Permutation graphs and transitive
graphs. Journal of the ACM (JACM), 19(3):400–410, 1972.

[64] J. Fiala, P. Klav́ık, J. Kratochv́ıl, and R. Nedela. Algorithmic aspects of
regular graph covers with applications to planar graphs. In ICALP 2014,
volume 8572 of LNCS, pages 489–501, 2014.

[65] J. Fiala, P. Klav́ık, J. Kratochv́ıl, and R. Nedela. 3-connected reduction for
regular graph covers. CoRR, abs/1503.06556, 2017.

[66] S. Fisk. Geometric coloring theory. Advances in Math., 24(3):298–340,
1977.

[67] Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On
the tractability of optimization problems on h-graphs. Algorithmica,
82(9):2432–2473, 2020.

[68] M. Fontet. Calcul de centralisateur d’un groupe de permutations. Bull.
Soc. Math. France Mém.,(49-50), pages 53–63, 1977.

[69] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs.
Pac. J. Math., 15:835–855, 1965.

[70] C. P. Gabor, K. J. Supowit, and W. Hsu. Recognizing circle graphs in
polynomial time. J. ACM, 36(3):435–473, 1989.

[71] C. P. Gabor, K. J. Supowit, and W.-L. Hsu. Recognizing circle graphs in
polynomial time. Journal of the ACM (JACM), 36(3):435–473, 1989.

[72] T. Gallai. Transitiv orientierbare graphen. Acta Math. Hungar., 18(1):25–
66, 1967.

[73] F. Gavril. Maximum weight independent sets and cliques in intersection
graphs of filaments. Information Processing Letters, 73(5):181–188, 2000.

[74] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56,
1974.

141

[75] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: Char-
acterizations and fully dynamic algorithms for totally decomposable graphs.
Discrete Appl. Math., 160(6):708–733, 2012.

[76] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient circle
graph recognition. Algorithmica, 69(4):759–788, 2014.

[77] E. Gioan, C. Paul, M. Tedder, and D. Corneil. Practical and efficient split
decomposition via graph-labelled trees. Algorithmica, 69(4):789–843, 2014.

[78] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57.
Elsevier, 2004.

[79] M. C. Golumbic, D. Rotem, and J. Urrutia. Comparability graphs and
intersection graphs. Discrete Mathematics, 43(1):37–46, 1983.

[80] Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph
Structure Theory, volume 47 of Lecture Notes in Logic. Cambridge Univer-
sity Press, 2017.

[81] Martin Grohe. Descriptive complexity, canonisation, and definable graph
structure theory, volume 47. Cambridge University Press, 2017.

[82] Martin Grohe and Sandra Kiefer. A linear upper bound on the Weisfeiler-
Leman dimension of graphs of bounded genus. In 46th International Collo-
quium on Automata, Languages, and Programming, ICALP 2019, July 9-
12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 117:1–117:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[83] Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomor-
phism test for graphs of small degree. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, pages 89–100. IEEE Computer Society, 2018.

[84] Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An
improved isomorphism test for bounded-tree-width graphs. ACM Trans.
Algorithms, 16(3):34:1–34:31, 2020.

[85] J. L. Gross and T. W. Tucker. Topological graph theory. Dover, 2001.

[86] B. Grünbaum and G. C. Shephard. Tilings and patterns. Freeman, 1987.

[87] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
In International Symposium on Graph Drawing, pages 77–90. Springer,
2000.

[88] P. Hanlon. Counting interval graphs. Transactions of the American Math-
ematical Society, 272(2):383–426, 1982.

[89] Zdeněk Hedrĺın and Aleš Pultr. On full embeddings of categories of algebras.
Illinois Journal of Mathematics, 10(3):392–406, 1966.

[90] Christoph M Hoffmann. Subcomplete generalizations of graph isomorphism.
Journal of Computer and System Sciences, 25(3):332–359, 1982.

142

[91] J. E. Hopcroft and R. E. Tarjan. A V 2 algorithm for determining isomor-
phism of planar graphs. Information Processing Letters, 1(1):32–34, 1971.

[92] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected com-
ponents. SIAM Journal on Computing, 2(3):135–158, 1973.

[93] J. E. Hopcroft and R. Endre. Tarjan. A V log V algorithm for isomorphism
of triconnected planar graphs. J. Comput. Syst. Sci., 7(3):323–331, 1973.

[94] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism on
planar graphs. In Proc. 6th Annual ACM Symp. on Theory of Computing.,
1974.

[95] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the 6th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1974, Seattle,
Washington, USA, pages 172–184. ACM, 1974.

[96] W. L. Hsu. Ø(M · N) algorithms for the recognition and isomorphism
problems on circular-arc graphs. SIAM Journal on Computing, 24(3):411–
439, 1995.

[97] G. A. Jones and D. Singerman. Theory of maps on orientable surfaces.
Proceedings of the London Mathematical Society, 3(2):273–307, 1978.

[98] Vı́t Kalisz, Pavel Klav́ık, and Peter Zeman. Circle graph isomorphism in
almost linear time. 2019.

[99] K. Kawarabayashi, P. Klav́ık, B. Mohar, R. Nedela, and P. Zeman. Isomor-
phisms of maps on the sphere. In Polytopes and Discrete Geometry, volume
764 of Contemporary Mathematics, pages 125–147. American Mathematical
Society, 2021.

[100] Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman.
Automorphisms and isomorphisms of maps in linear time. In 48th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland, volume 198 of LIPIcs, pages
86:1–86:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[101] Sandra Kiefer and Daniel Neuen. The power of the Weisfeiler-Leman algo-
rithm to decompose graphs. In 44th International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2019, August 26-30,
2019, Aachen, Germany, volume 138 of LIPIcs, pages 45:1–45:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[102] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-
leman dimension of planar graphs is at most 3. In 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–
12. IEEE, 2017.

[103] Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler-
Leman dimension of planar graphs is at most 3. J. ACM, 66(6):44:1–44:31,
2019.

143

[104] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and
T. Vyskočil. Extending partial representations of proper and unit interval
graphs. Algorithmica, 77(4):1071–1104, 2017.

[105] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, and T. Saitoh. Extending partial rep-
resentations of subclasses of chordal graphs. Theoretical Computer Science,
576:85–101, 2015.

[106] P. Klav́ık, J. Kratochv́ıl, Y. Otachi, T. Saitoh, and T. Vyskočil. Extending
partial representations of interval graphs. Algorithmica, 2016.

[107] P. Klav́ık and P. Zeman. Automorphism groups of geometrically repre-
sented graphs. In 32nd International Symposium on Theoretical Aspects
of Computer Science (STACS 2015), volume 30 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 540–553, 2015.

[108] Pavel Klav́ık, Roman Nedela, and Peter Zeman. Jordan-like characteriza-
tion of automorphism groups of planar graphs. 2021.

[109] Pavel Klav́ık and Peter Zeman. Automorphism groups of geometrically
represented graphs. submitted, 2019.

[110] Johannes Köbler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbitsky.
Interval graphs: Canonical representations in logspace. SIAM Journal on
Computing, 40(5):1292–1315, 2011.

[111] Johannes Köbler, Sebastian Kuhnert, and Oleg Verbitsky. Helly circular-arc
graph isomorphism is in logspace. In International Symposium on Mathe-
matical Foundations of Computer Science, pages 631–642. Springer, 2013.

[112] N. Korte and R. H. Möhring. An incremental linear-time algorithm for
recognizing interval graphs. SIAM J. Comput., 18(1):68–81, 1989.

[113] T. Krawczyk and B. Walczak. Extending partial representations of trape-
zoid graphs. In WG 2017, Lecture Notes in Computer Science, 2017.

[114] In-Jen Lin, Terry A. McKee, and Douglas B. West. The leafage of a chordal
graph. Discuss. Math. Graph Theory, 18(1):23–48, 1998.

[115] Min Chih Lin, Francisco J Soulignac, and Jayme L Szwarcfiter. A simple
linear time algorithm for the isomorphism problem on proper circular-arc
graphs. In Scandinavian Workshop on Algorithm Theory, pages 355–366.
Springer, 2008.

[116] Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket
Saurabh. Fixed-parameter tractable canonization and isomorphism test
for graphs of bounded treewidth. SIAM J. Comput., 46(1):161–189, 2017.

[117] G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval
graph isomorphism. Journal of the ACM (JACM), 26(2):183–195, 1979.

[118] George S. Lueker and Kellogg S. Booth. A linear time algorithm for deciding
interval graph isomorphism. J. ACM, 26(2):183–195, 1979.

144

[119] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested
in polynomial time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[120] Eugene M. Luks. Permutation groups and polynomial-time computation.
In Groups And Computation, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, October 7-10, 1991, volume 11 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages
139–175. DIMACS/AMS, 1991.

[121] S. Mac Lane. A structural characterization of planar combinatorial graphs.
Duke Mathematical Journal, 3(3):460–472, 1937.

[122] P. Mani. Automorphismen von polyedrischen graphen. Mathematische An-
nalen, 192(4):279–303, 1971.

[123] François Margot. Symmetry in integer linear programming. In 50 Years
of Integer Programming 1958-2008 - From the Early Years to the State-of-
the-Art, pages 647–686. Springer, 2010.

[124] R. Mathon. A note on the graph isomorphism counting problem. Informa-
tion Processing Letters, 8(3):131–136, 1979.

[125] Rudolf Mathon. A note on the graph isomorphism counting problem. Inf.
Process. Lett., 8(3):131–132, 1979.

[126] R.M. McConnell and J.P. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201(1–3):189–241, 1999.

[127] Gary L. Miller. Graph isomorphism, general remarks. In Proceedings of
the 9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA, pages 143–150. ACM, 1977.

[128] Gary L. Miller. Isomorphism testing for graphs of bounded genus. In
Proceedings of the 12th Annual ACM Symposium on Theory of Computing,
April 28-30, 1980, Los Angeles, California, USA, pages 225–235. ACM,
1980.

[129] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Univer-
sity Press, 2001.

[130] W. Naji. Graphes de Cordes: Une Caracterisation et ses Applications. PhD
thesis, l’Université Scientifique et Médicale de Grenoble, 1985.

[131] R. Nedela and M. Škoviera. Exponents of orientable maps. Proceedings of
the London Mathematical Society, 75(1):1–31, 1997.

[132] Roman Nedela, Ilia Ponomarenko, and Peter Zeman. Testing isomorphism
of circular-arc graphs in polynomial time. arXiv preprint arXiv:1903.11062,
2019.

[133] T. Needham. Visual complex analysis. Oxford University Press, 1998.

145

[134] Daniel Neuen. Hypergraph isomorphism for groups with restricted com-
position factors. In 47th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference), volume 168 of LIPIcs, pages 88:1–88:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[135] Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hard-
ness of robust graph isomorphism, lasserre gaps, and asymmetry of random
graphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 1659–1677. SIAM, 2014.

[136] S. Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–
100, 2005.

[137] I. N. Ponomarenko. The isomorphism problem for classes of graphs closed
under contraction. Journal of Soviet Mathematics, 55(2):1621–1643, 1991.

[138] Louis C. Ray and Russell A. Kirsch. Finding chemical records by digital
computers. Science, 126(3278):814–819, 1957.

[139] F. S. Roberts. Indifference graphs. Proof techniques in graph theory,
139:146, 1969.

[140] R. W. Robinson. Enumeration of non-separable graphs. Journal of Com-
binatorial Theory, 9(4):327–356, 1970.

[141] J. J. Rotman. An Introduction to the Theory of Groups. Graduate Texts
in Mathematics. Springer, 1994.

[142] T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara. Random generation
and enumeration of bipartite permutation graphs. Journal of Discrete Al-
gorithms, 10:84–97, 2012.

[143] W. Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343,
1989.

[144] Ákos Seress and Á Seress. Permutation group algorithms. Number 152.
Cambridge University Press, 2003.

[145] Yossi Shiloach. Fast canonization of circular strings. Journal of algorithms,
2(2):107–121, 1981.

[146] J. Spinrad. On comparability and permutation graphs. SIAM J. Comput.,
14(3):658–670, 1985.

[147] J. P. Spinrad. Recognition of circle graphs. J. of Algorithms, 16(2):264–282,
1994.

[148] J. P. Spinrad. Efficient Graph Representations.: The Fields Institute for
Research in Mathematical Sciences., volume 19. American Mathematical
Soc., 2003.

146

[149] Juraj Stacho. On 2-subcolourings of chordal graphs. In Eduardo Sany
Laber, Claudson F. Bornstein, Loana Tito Nogueira, and Luérbio Faria,
editors, LATIN 2008: Theoretical Informatics, 8th Latin American Sympo-
sium, Búzios, Brazil, April 7-11, 2008, Proceedings, volume 4957 of Lecture
Notes in Computer Science, pages 544–554. Springer, 2008.

[150] Ernst Steinitz. Polyeder und Raumeinteilungen. Encyclopädie der mathe-
matischen Wissenschaften. BG Teubner Verlag Leipzig, 1922.

[151] J. Stillwell. Geometry of surfaces. Springer, 1992.

[152] Ondrej Šuch. Vertex-transitive maps on a torus. Acta Math. Univ. Come-
nianae, 80(1):1–30, 2011.

[153] A. Takaoka. Graph isomorphism completeness for trapezoid graphs. CoRR,
abs/1503.06929, 2015.

[154] C. Thomassen. Tilings of the torus and the Klein bottle and vertex-
transitive graphs on a fixed surface. Trans. Amer. Math. Soc., 323(2):605–
635, 1991.

[155] M.C. Thornton. Spaces with given homeomorphism groups. Proc. Amer.
Math. Soc., 33:127–131, 1972.

[156] B.A. Trakhtenbrot. Towards a theory of non-repeating contact schemes.
Trudi Mat. Inst. Akad. Nauk SSSR, 51:226–269, 1958.

[157] W. T. Tutte. Connectivity in graphs, volume 15. University of Toronto
Press, 1966.

[158] W. T. Tutte. Graph Theory. Cambridge University Press, 2001.

[159] R. Uehara. Tractabilities and intractabilities on geometric intersection
graphs. Algorithms, 6(1):60–83, 2013.

[160] T.R.S. Walsh. Counting unlabeled three-connected and homeomorphically
irreducible two-connected graphs. J. Combin. Theory B, 32:12–32, 1982.

[161] L. Weinberg. A simple and efficient algorithm for determining isomorphism
of planar triply connected graphs. IEEE Transactions on Circuit Theory,
13(2):142–148, 1966.

[162] B. Weisfeiler and A.A. Leman. A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsiya, 9:12–16, 1968.

[163] H. Whitney. Nonseparable and planar graphs. Trans. Amer. Math. Soc.,
34:339–362, 1932.

[164] M. Yannakakis. The complexity of the partial order dimension problem.
SIAM Journal on Algebraic Discrete Methods, 3(3):351–358, 1982.

147

[165] Hao Zhou, Wei Zhang, Fengqiong Wei, and Yunfang Chen. Analysis of
android malware family characteristic based on isomorphism of sensitive
api call graph. In 2017 IEEE Second International Conference on Data
Science in Cyberspace (DSC), pages 319–327, 2017.

148

List of publications
The papers related to this thesis are marked by ⋆.

Journal papers
1. Steven Chaplick, and Peter Zeman: Combinatorial Problems on H-graphs.

Electronic Notes in Discrete Mathematics. September 2017.

2. Pavel Klav́ık, Dušan Knop, Peter Zeman: Graph isomorphism restricted by
lists. Theoretical Computer Science. January 2021.

3. ⋆ Ken-ichi Kawarabayashi, Pavel Klav́ık, Bojan Mohar, Roman Nedela, and
Peter Zeman: Isomorphism of maps on the sphere. Volume “Polytopes and
Discrete Geometry” of Contemporary Mathematics, American Mathemati-
cal Society. January 2021.

4. Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dušan Knop, and Peter
Zeman: Kernelization of Graph Hamiltonicity: Proper H-graphs. SIAM
Journal of Discrete Mathematics. April 2021.

5. Steven Chaplick, Martin Töpfer, Jan Voborńık, and Peter Zeman: On H-
Topological Intersection Representations of Graphs. Algorithmica. June
2021.

6. ⋆ Pavel Klav́ık, and Peter Zeman: Automorphism Groups of Geometrically
Represented Graphs. Currently being revised in Ars Mathematica Contem-
poranea.

7. ⋆ Pavel Klav́ık, Roman Nedela, Peter Zeman: Jordan-like characterization
of automorphism groups of planar graphs. Currently being revised in Jour-
nal of Combinatorial Theory, Series B.

Conference proceedings
1. ⋆ Pavel Klav́ık, and Peter Zeman: Automorphism Groups of Geometrically

Represented Graphs. 32nd International Symposium on Theoretical Aspects
of Computer Science (STACS). March 2015.

2. Steven Chaplick, Martin Töpfer, Jan Voborńık, and Peter Zeman: On H-
Topological Intersection Representations of Graphs. International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG). June 2017.

3. Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dušan Knop, and Peter
Zeman: Kernelization of Graph Hamiltonicity: Proper H-graphs. Workshop
on Algorithms and Data Structures (WADS). August 2019.

4. Pavel Klav́ık, Dušan Knop, and Peter Zeman: Graph Isomorphism Re-
stricted by Lists. International Workshop on Graph-Theoretic Concepts in
Computer Science (WG). June 2020.

149

5. ⋆ Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Ze-
man: Automorphisms and Isomorphisms of Maps in Linear Time. Interna-
tional Colloquium on Automata, Languages and Programming (ICALP).
July 2021.

Currently submitted papers
1. ⋆ Vı́t Kalisz, Pavel Klav́ık, and Peter Zeman: Circle Graph Isomorphism in

Almost Linear Time. Submitted.

2. Jǐŕı Fiala, Ignaz Rutter, Peter Stümpf, Peter Zeman: Extending Partial
Representations of Circular-Arc Graphs. Submitted.

3. Kenta Ozeki, Peter Zeman: Characterization of extended star graphs by
asteroidal k-tuples. Submitted.

4. ⋆ Peter Zeman: Automorphism groups of subclasses of planar graphs. Sub-
mitted.

5. ⋆ Steven Chaplick, Peter Zeman: Isomorphism-completeness for H-graphs.
Submitted.

6. ⋆ Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Zeman:
Testing isomorphism of chordal graphs of bounded leafage is fixed-parameter
tractable. Submitted.

150

	Introduction
	Preliminaries: elements of group theory
	Group actions
	Group products
	Two simple applications

	Interval, permutation and circle graphs
	Introduction
	Automorphism groups acting on intersection representations
	Automorphism groups of interval graphs
	PQ- and MPQ-trees
	Automorphisms of MPQ-trees
	The inductive characterization
	The action on interval representations
	Direct constructions
	Automorphism groups of unit interval graphs

	Automorphism groups of circle graphs
	Split decomposition
	Automorphisms of split trees
	The action on prime circle representations
	The inductive characterization
	The action on circle representations

	Comparability and permutation graphs
	Modular decomposition
	Automorphisms of modular trees
	Automorphism groups of comparability graphs
	Automorphism groups of permutation graphs
	Bipartite permutation graphs
	Comparability graphs of dimension k

	Algorithms
	Open problems

	Isomorphism of circle graphs in almost linear time
	Introduction
	Minimal split decomposition and split trees
	Canonization of graph-labeled trees
	Canonization of prime and degenerate circle graphs
	Canonization and graph isomorphism of circle graphs
	Open problems

	Isomorphism problem for chordal graphs
	Introduction
	Notation
	Stable colorings in chordal graphs
	Critical set of a chordal graph
	A hypergraph associated with complement of the critical set
	Order-k hypergraph isomorphism: bounded color classes
	Proof of Theorem 4.2
	GI-completeness for H-graphs

	Automorphism groups of planar graphs
	Introduction
	Extended graphs
	Reduction to 3-connected graphs
	Parts
	Atoms and primitive graphs
	Reduction
	Recursive construction of automorphism groups

	Point-orbits of spherical groups
	Automorphism groups of 3-connected planar graphs
	Jordan-like characterization
	Vertex-stabilizers of planar graphs
	Composing spherical groups with vertex-stabilizers

	Automorphism groups of maps in linear time
	Introduction
	Preliminaries: maps on surfaces
	Overview of the algorithm
	From oriented to uniform oriented maps
	Irreducible maps on orientable surfaces
	Surfaces of negative Euler characteristic
	Sphere
	Torus

	Non-orientable surfaces
	Complexity of the algorithm and summary

	Bibliography
	List of publications

