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Graph isomorphisms and homomorphisms
Definition. A map ϕ : V(G)→ V(H) is an isomorphism if
ϕ(u)ϕ(v) ∈ E(H)⇔ uv ∈ E(G). We write G ∼= H.

Example.

Definition. A map ϕ : V(G)→ V(H) is a homomorphism if
uv ∈ E(G) =⇒ ϕ(u)ϕ(v) ∈ E(H).
Example.

C7 → C5
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Homomorphism indistinguishability

Thm (Lovász). G ∼= H⇔ ∀ F hom(F,G) = hom(F,H), where
hom(F,G) := # of homomorphisms from F to G.

Def. G ∼=F H denotes ∀ F ∈ F hom(F,G) = hom(F,H).

The class F The relation G ∼=F H

All graphs Isomorphism [Lovász 1967]

Cycles Cospectrality
Cycles & paths Cospectral & cospectral complements
Trees Fractional isomorphism [Dvǒrák 2010]

Treewidth 6 k Indistinguishable by k-WL [Dvǒrák 2010]

Treedepth 6 k Ind. by FOL w/ counting of quantifier rank 6 k [Grohe 2020]

Planar graphs Quantum isomorphism [Mančinska, Roberson 2020]

Pk kth level of NPA is feasible for (G,H)-iso. game

Benefits. (1) randomized poly-time algorithm for kth level
(2) more elementary proof avoiding quantum groups.
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Main theorem

The kth level of the NPA hierarchy for the
(G,H)-isomorphism game is feasible

m

There exists a level-k quantum
isomorphism map from G to H

m

G and H are homomorphism
indistinguishable over Pk
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Nonlocal games (Bell games, Bell inequalities)

A two-player cooperative game, where Alice and Bob try to win
against a referee.

Finite sets of questions X, Y and answers A,B, and a winning
predicate V : X× Y ×A× B→ {0, 1}.

R

BA

• Referee sends x ∈ X and y ∈ Y
according to π.

• Players respond with a ∈ A and
b ∈ B.

• Players win if V(a,b|x,y) = 1.

Players play only one round. Players can agree on a strategy
beforehand, but they cannot communicate after the game starts.
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Example: Clauser, Horne, Shimony, Holt (CHSH) game

• X = Y = A = Y = {0, 1},

• π is uniform,

• V(a,b|x,y) =

{
1 if a⊕ b = x∧ y,

0 if a⊕ b 6= x∧ y.
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Strategies

Deterministic. A pair of functions f : X→ A and g : Y → B.

The classical value of a game G is

ω(G) = max
f,g

∑
x,y

π(x,y)V(f(x),g(y)|x,y).

Quantum. Players share a state |Ψ〉 ∈ CdA ⊗ CdB .

• A POVM Ex = {Exa ∈ CdA×dA : a ∈ A}, for each x ∈ X.

• A POVM Fy = {Fxb ∈ CdB×dB : b ∈ B}, for each y ∈ Y.

Positive operator valued measure,
∑
a∈A Exa = I, Exa � 0.

Alice and Bob answer a,b given x,y with probability

p(a,b|x,y) = 〈Ψ| (Exa ⊗ Fyb) |Ψ〉 .

The quantum value ω∗(G) of a game G is the supermum of∑
x,y

π(x,y)
∑
a,b

V(a,b|x,y)p(a,b|x,y).
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Example: Clauser, Horne, Shimony, Holt (CHSH) game

• X = Y = A = Y = {0, 1},

• π is uniform,

• V(a,b|x,y) =

{
1 if a⊕ b = x∧ y,

0 if a⊕ b 6= x∧ y.

Thm. ω(CHSH) = 3/4 < cos2(π/8) = ω∗(CHSH).
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(G,H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G ∼= H.

Assume: |V(G)| = |V(H)|

R

BA

• Referee sends g,g ′ ∈ V(G).
• Players respond with
h,h ′ ∈ V(H).

To win players must respond with h,h ′ such that

rel(h,h ′) = rel(g,g ′)

where rel denotes how two vertices are “related”.

Proposition. G ∼= H ⇔ Classical players can win the game.
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Quantum isomorphism

G ∼=qc H := Quantum players can win the (G,H)-isomorphism game.

Quantum strategies

R

BA

g ′g

h h ′

ψ

• Alice and Bob share a quantum state |ψ〉 ∈ H

• Upon receiving g, Alice performs a POVM
Eg = {Egh ∈ B(H) : h ∈ V(H)} and obtains
outcome h ∈ V(H)

• Bob measures with Fg′

• All Egh and Fg′h′ commute

The probability that players respond with h,h ′ on questions g,g ′ is

p(h,h ′|g,g ′) = 〈ψ|EghFg ′h ′ |ψ〉
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Example: G 6∼= H but G ∼=qc H

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Construction based on reduction from linear system games.
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Quantum permutation matrix

A matrix P = (pij) is quantum permutation matrix if pij are
elements of an C∗-algebra s.t.

• p2
ij = pij = p

∗
ij for all i, j,

• ∑
k pik = 1 =

∑
l plj for all i, j.

Thm (Lupini, Mančinska, Roberson). G ∼=qc H⇔ AGP = PAH,
for some quantum permutation matrix P.

This is similar to

G ∼= H⇔ AGP = PAH (isomorphism),

G ∼=T H⇔ AGD = DAH (fractional isomorphism).
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Bilabelled graphs

Definition.
A (k,k)-bilabelled graph is a triple F = (F,u, v) where

• F is a graph;

• u = (u1, . . . ,uk), v = (v1, . . . , vk) ∈ V(F)k.

Example. F =
(
K4, (1, 2), (2, 2)

)
.
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How to draw bilabelled graphs

(
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43

A bilabelled graph is planar if it can be drawn with no crossings.
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Homomorphism matrices

Let G be a graph and F = (F,u, v) a (k,k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1 . . .gk,g ′1 . . .g ′k)-entry of the homomorphism matrix FG
is ∣∣{homs ϕ : F→ G | ϕ(ui) = gi, ϕ(vj) = g

′
j ∀i, j}

∣∣ .

Remark. hom(F,G) = sum of the entries of FG.

Example. A = (K2, (1), (2)) 1 2

(AG)g,g ′ =

{
1 if gg ′ ∈ E(G),
0 otherwise.

So AG is the adjacency matrix of G.
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Operations on bilabelled graphs: Series composition

Theorem. For a graph G and bilabelled graphs F, F′,

FGF
′
G =

(
F ◦ F′

)
G

,

where F ◦ F′ is defined as

1

2

3

4

5

F

a

b

c

d

F ′

e

1

2

3

{4, a, c}

{5, b, d}
e

F ◦ F ′

◦ =

2

1

3

4

5

6

a

b

c

d 2

{1, d}

{3, a, c}
4

5

6

b
◦ =

17 / 37



Operations on bilabelled graphs: Series composition

Theorem. For a graph G and bilabelled graphs F, F′,

FGF
′
G =

(
F ◦ F′

)
G

,

where F ◦ F′ is defined as

1

2

3

4

5

F

a

b

c

d

F ′

e

1

2

3

{4, a, c}

{5, b, d}
e

F ◦ F ′

◦ =

2

1

3

4

5

6

a

b

c

d 2

{1, d}

{3, a, c}
4

5

6

b
◦ =

17 / 37



Operations on bilabelled graphs: Series composition

Theorem. For a graph G and bilabelled graphs F, F′,

FGF
′
G =

(
F ◦ F′

)
G

,

where F ◦ F′ is defined as

1

2

3

4

5

F

a

b

c

d

F ′

e

1

2

3

{4, a, c}

{5, b, d}
e

F ◦ F ′

◦ =

2

1

3

4

5

6

a

b

c

d 2

{1, d}

{3, a, c}
4

5

6

b
◦ =

17 / 37



Operations on bilabelled graphs: Parallel composition

Theorem. For a graph G and bilabelled graphs F, F′,

FG � F′G =
(
F� F′

)
G

,

where FG � F′G is the entrywise product, and F� F′ is defined as

(a)

⊙ =

Mk Ck Vk

(b)

V
(1)
k

V
(k−1)
k

=

Gk

Other operations: transposition and cyclic permutations.
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The class of bilabelled graphs Pk

Definition. For k ∈ N, define

1 QPk to be the set of all minors of Ck;

2 QSk to be the set of all minors of Mk;

3 Qk = QPk ∪QSk.

Then Pk is the class of (k,k)-bilabelled graphs generated by the
elements of Qk under

• series composition,

• parallel composition with the elements of QPk ,

• transpose,

• and cyclic permutations.

Definition. Pk = {F : ∃(F,u, v) ∈ Pk}
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What have we done and what is next?

We have:

• Q̂kG – minimal matrix algebra over C that contains
homomorphism matrices of all atomic graphs in Qk.

• Q̂kG is unital, self-adjoint, contains J, closed under cyclic
permutations of labels, and closed under Schur product with
homomorphism matrices of all atomic graphs in QPk .

Theorem. G ∼=Pk H ⇔ there is an isomorphism Q̂kG → Q̂kG.

Next:

• We apply NPA hierarchy to (G,H)-isomorphism game and get
a relaxation of quantum isomorphism for each k ∈ N.

• For each k ∈ N, the feasibility of the kth level gives an
isomorphism Q̂kG → Q̂kG.

• The other direction works too.
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NPA hierarchy (intuition)

Let k ∈ N. For all ` 6 k, define∣∣ψg1h1...g`h`

〉
:= Eg1h1Eg2h2 . . .Eg`h` |ψ〉

and let R be the Gram matrix of these vectors.

Observation: R will be be psd and its entries will satisfy some
linear constraints.

This gives rise to a semidefinite program → NPA hierarchy.
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NPA hierarchy for the isomorphism game

Let Σ = V(G)× V(H).
A matrix R ∈MΣ6k(C) is a certificate for the kth level of the
NPA hierarchy for the (G,H)-isomorphism game if

1 R � 0,

2 Rε,ε = 1,

3 Rs,t depends only on the equivalence class of sRt,

4
∑
h ′ Rs(g,h ′)s ′,t =

∑
g ′ Rs(g ′,h)s ′,t = Rss ′,t,

5 for s, t ∈ Σ6k, if gh,g ′h ′ occur consecutively in sRt and
rel(g,g ′) 6= rel(h,h ′), then Rs,t = 0.

Thm. (G,H)-isomorphism game has a perfect quantum strategy iff
there is a certificate for the kth level of the NPA hierarchy, k ∈ N.
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Completely positive maps

A linear map Φ : Mm(C)→Mn(C) is positive if Φ(X) is positive
for all positive X.

A linear map Φ : Mm(C)→Mn(C) is completely positive if
Ir ⊗Φ is positive for all r ∈ N.

The Choi matrix of a linear map Φ : Mm(C)→Mn(C) is

CΦ =

m∑
i,j=1

Eij ⊗Φ(Eij) ∈Mmn(C),

where Eij denotes the matrix that is 1 at the (i, j)-th entry and 0
otherwise.

Thm (Choi, 1975). Φ is completely positive ⇔ CΦ is positive.
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Constructing a completely positive map

We use a principal submatrix of a certificate R for the kth level of
the NPA hierarchy as the Choi matrix of a linear map and show
that this is level-k quantum isomorphism.

Taking the Choi matrix of a level-k quantum isomorphism we can
reconstruct a certificate for the kth level of the NPA hierarchy.

1 Let R be a solution for the kth level of NPA.

2 Take C to be the principal submatrix of R indexed by
Σk = (V(G)× V(H))k.

3 Define Φ : MV(G)k(C)→MV(H)k(C) to be the linear map
with Choi matrix C, i.e.,

Φ(X)h,h′ =
∑

g,g′∈V(G)k

Cg1h1...gkhk,g ′1h
′
1...g ′kh

′
k
Xg,g′

4 The constraints on R translate into constraints on the map Φ.
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Quantum isomorphism maps

Definition. A linear map Φ : MV(G)k(C)→MV(H)k(C) is a
level-k quantum isomorphism map if

1 Φ is completely positive;

2 Φ(I) = I = Φ∗(I);

(thus Φ is unital and trace-preserving)

3 Φ(J) = J = Φ∗(J);

(thus Φ is sum-preserving)

4 Φ(FG) = FH for all F ∈ Qk;

5 Φ(FG � X) = FH �Φ(X) for all F ∈ QPk , X ∈MV(G)k(C);
6 Φ(Xσ) = Φ(X)σ for all “cyclic permutations” σ.

Lemma. Such a map will also satisfy Φ(FG) = FH for all F ∈ Pk.

Corollary. The existence of such a map implies G ∼=Pk H.

Converse requires some previous results and a bit of combinatorics.
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Recap

The kth level of the NPA hierarchy for the
(G,H)-isomorphism game is feasible

m

There exists a level-k quantum
isomorphism map from G to H

m

G and H are homomorphism
indistinguishable over Pk
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Corollary

Corollary. G ∼=qc H if and only if G ∼=P H, where P = ∪∞k=1Pk.

All that is left is to show that P is the class of all planar graphs.

Proof that P ⊆ planar graphs: All generators of Pk are planar,
all operations preserve planarity.
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Proof that P ⊇ planar graphs

Lemma. Each Pk is minor-closed, and thus so is each Pk and P.

Lemma. The class Pk contains the k× k grid.

Proof.

(a)

⊙ =

Mk Ck Vk

(b)

V
(1)
k

◦ ◦

V
(k−1)
k

=

Gk

Well-known: Every planar graph is the minor of some k× k grid.
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Some remarks/questions

• Pk has treewidth bounded by 3k− 1. This implies there is a
randomized poly time algorithm for determining if G ∼=Pk H,
and thus whether the kth level of the NPA hierarchy for the
(G,H)-isomorphism game is feasible.

• There are graphs G and H of size 6 72k2 that are not
quantum isomorphic, but the kth level of the NPA hierarchy is
feasible for the (G,H)-isomorphism game.

• Can we obtain a better description of the classes Pk?
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Thank you!

30 / 37



The hierarchy of Navascués,
Pironio, and Aćın (NPA)
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CHSH game, X = Y = A = B = {0, 1}. Deterministic strategies M:
1 1 1 1




1 1
1 1




1 1
1 1


1 1 1 1




1 1

1 1




1
1

1
1




1
1

1
1


1 1

1 1




1 1

1 1




1
1

1
1




1
1

1
1


 1 1

1 1


1 1 1 1


1 1

1 1


 1 1

1 1




1 1 1 1



Representing the CHSH game as a matrix K yields

K =
1

4


1 1 1

1
1

1 1 1


The classical value is supM〈K,M〉 = supM Tr[K∗M] = 3/4.
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Nonlocal games
Def. A nonlocal game is a 6-tuple (X, Y,A,B,π,V), where

1 X, Y, A, and B are finite and nonempty sets,

2 π ∈ P(X× Y) is a probability vector, and

3 V : A× B× X× Y → {0, 1} is a predicate.

The sets X, Y are questions and A,B are answers. The predicate
V(a,b|x,y) determines whether the players win or lose.

We can think of strategies as being represented by operators

M ∈ L(RX ⊗ RY ,RA ⊗ RB).

The value M(a,b|x,y) represents the probability that Alice and
Bob answer (x,y) with (a,b).

The probability that M wins a game is∑
(x,y)∈X×Y

π(x,y)
∑

(a,b)∈A×B
V(a,b|x,y)M(a,b|x,y) = 〈K,M〉,

where K(a,b|x,y) = π(x,y)V(a,b|x,y).
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Commuting measurement strategies
An operator M represents a commuting measurement strategy
if there exists a Hilbert space H, a unit vector u ∈ H, and
projection operators

{Pxa : x ∈ X,a ∈ A} and {Q
y
b : y ∈ Y,b ∈ B}

acting on H such that the follwoing are satisfied:

1
∑
a∈A P

x
a = 1H and

∑
b∈BQ

y
b = 1H, x ∈ X,y ∈ Y,

2 [Pxa,Qyb] = 0, x ∈ X,y ∈ Y,a ∈ A,b ∈ B,

3 M(a,b|x,y) = 〈u,PxaQ
y
bu〉, x ∈ X,y ∈ Y,a ∈ A,b ∈ B.

A commuting measurement value of game G is

ωc(G) = sup
M∈C

〈K,M〉,

where K is defined from G as before and C is the class of
commuting measurement strategies.
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1st level of the NPA hierarchy (intuition)

For a commuting measurement strategy M, we would like to
capture the numbers M(a,b|x,y) = 〈u,PxaQ

y
bu〉.

We can consider the Gram matrix of the vectors:

{u} ∪ {Pxau : x ∈ X,a ∈ A} ∪ {Q
y
bu : y ∈ Y,b ∈ B}.

Let Σ61 = (X×A) t (Y × B) ∪ {ε}.

Suppose that R ∈ L(CΣ61
,CΣ61

). We observe the following:

1 R(ε, ε) = 1, (u is unit)

2
∑
a∈A R((x,a), s) = R(ε, s) and

∑
a∈A R(s, (x,a)) = R(s, ε),∑

b∈B R((y,b), s) = R(ε, s) and
∑
b∈B R(s, (y,b)) = R(s, ε),

(summing over operators in measurements is identity)

3 R((x,a), (x, c)) = 0, x ∈ X,a, c ∈ A, a 6= c,
R((y,b), (y,d)) = 0, y ∈ Y,b,d ∈ B, b 6= d,
(Pxa and Pxc , Q

y
b and Qyd are orthogonal)

4 R((z, c), (z, c)) = R(ε, (z, c)) = R((z, c), ε), (P2 = P)

5 R((x,a), (y,b)) = R((y,b), (x,a)). (commutativity)
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1st level of the NPA hierarchy (intuition)

Let C1 be the class containing all strategies M for which there is a
positive semidefinite R such that M(a,b|x,y) = R((x,a), (y,b)).
We have

ωc(G) = sup
M∈C

〈K,M〉 6 sup
M∈C1

〈K,M〉.

If we define a Hermitian operator H ∈ L(CΣ61
,CΣ61

) by

H((x,a), (y,b)) = H((y,b), (x,a)) =
1

2
π(x,y)V(a,b|x,y),

we get
〈K,M〉 = 〈H,R〉,

which gives us a semidefinite program, where we optimize 〈H,R〉
over positive semidefinite R satisfying (affine) linear constraints
given in items 1–5 above.
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kth level of the NPA hierarchy (intuition)

In the kth level of the NPA hierarchy we consider operators R
indexed by Σ6k satisfying conditions similar to 1–5.

Then the class Ck contains all strategies M for which there exists
such admissible operator R. We have:

C1 ⊇ C2 ⊇ C3 ⊇ · · · ⊇ C.

Thm. The following are equivalent:

• M is a commuting measurement strategy.

• M ∈ Ck for every k.

Equivalently:

C =

∞⋂
k=1

Ck.
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