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Definition. A map ¢: V(G) — V(H) is an isomorphism if
e(u)e(v) e E(H) & uv € E(G). We write G = H.
Example.

A -¢

Definition. A map ¢: V(G is a homomorphism if
uv € E(G) = o(u)e(v )E E(H).
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Homomorphism indistinguishability

Thm (Lovasz). G=H < V F hom(F, G) = hom(F, H), where
hom(F, G) := # of homomorphisms from F to G.
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Thm (Lovasz). G=H < V F hom(F, G) = hom(F, H), where
hom(F, G) := # of homomorphisms from F to G.

Def. G =4 H denotes V F € F hom(F, G) = hom(F, H).

The class F The relation G =54 H

All graphs Isomorphism [Lovasz 1967]

Cycles Cospectrality

Cycles & paths | Cospectral & cospectral complements
Trees Fractional isomorphism [Dvotak 2010]

Treewidth < k
Treedepth < k
Planar graphs

Py

Indistinguishable by k-WL [Dvo¥ak 2010]
Ind. by FOL w/ counting of quantifier rank < k [Grohe 2020]
Quantum isomorphism [Mané&inska, Roberson 2020]

k" level of NPA is feasible for (G, H)-iso. game

Benefits. (1) randomized poly-time algorithm for k™ level
(2) more elementary proof avoiding quantum groups.
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Main theorem

The k' level of the NPA hierarchy for the
(G, H)-isomorphism game is feasible

0

There exists a level-k quantum
isomorphism map from G to H

0

G and H are homomorphism
indistinguishable over Py
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Nonlocal games (Bell games, Bell inequalities)

A two-player cooperative game, where Alice and Bob try to win
against a referee.
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A two-player cooperative game, where Alice and Bob try to win

against a referee.
Finite sets of questions X, Y and answers A, B, and a winning

predicate V: X x Y x A x B — {0, 1}.

R ® Referee sends x € Xandy €Y
according to 7.

® Players respond with a € A and
b € B.

® Players win if V(a, blx,y) = 1.

Players play only one round. Players can agree on a strategy
beforehand, but they cannot communicate after the game starts.
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Example: Clauser, Horne, Shimony, Holt (CHSH) game

e X=Y=A=Y={0,1},

® 7T is uniform,

1 if b=xAuy,
-V(a.b|x,y)={ Ta@L=xAY

0 ifadb#x/Avy.
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Strategies

Deterministic. A pair of functions f: X — A and g: Y — B.
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Quantum. Players share a state [¥) € C4A @ C95.
e A POVM &, ={E,q € C9AXda . q ¢ A}, for each x € X.
° A POVM F, ={Fyp, € C46%d8 : b € B}, for each y € Y.

Positive operator valued measure, ZaeA Exa =1 Exqa = 0.
Alice and Bob answer a, b given x,y with probability

pla,blx,y) = (Y[ (Exa @ Fyp) [¥).

The quantum value w*(9) of a game G is the supermum of

D mlxy) ) V(a,blx,y)p(a blx,y).
X,y a,b
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Example: Clauser, Horne, Shimony, Holt (CHSH) game

e X=Y=A=Y={0,1},

® 7T is uniform,

1 if b=xAuy,
-V(a.b|x,y)={ Ta@L=xAY

0 ifadb#x/Avy.

Thm. w(CHSH) = 3/4 < cos?(t/8) = w*(CHSH).

8/37



(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G = H.
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(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G = H.
Assume: [V(G)| = |V(H)]

g g’ ® Referee sends g, g’ € V(G).
® Players respond with
h,h' € V(H).

A [h h 1B

To win players must respond with h, h’/ such that
rel(h, h') =rel(g, g’)

where rel denotes how two vertices are ‘“related”.

Proposition. G = H < Classical players can win the game.
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Quantum isomorphism

=4c H = Quantum players can win the (G, H)-isomorphism game.

Quantum strategies

R
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=4c H = Quantum players can win the (G, H)-isomorphism game.

Quantum strategies

® Alice and Bob share a quantum state [{) € H

g K g’ ® Upon receiving g, Alice performs a POVM
g =1{Egh € B(H) : h € V(H)} and obtains
outcome h € V(H)
An W B ® Bob measures with Fy.
V\/\/\/\/\/ * All Egn and Fg4,y commute
P

The probability that players respond with h, h' on questions g, g’ is
p(h, h/|g’ 9/) — <1|)| F—gth’h’ |1|)>
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Quantum permutation matrix

A matrix P = (pyj) is quantum permutation matrix if py; are
elements of an C*-algebra s.t.

o p% =pij = pj; for all 1,5,
® X xPik=1=2 py forallij.
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Quantum permutation matrix

A matrix P = (pyj) is quantum permutation matrix if py; are
elements of an C*-algebra s.t.

o p%j =pij = pj; for all 1,5,
® X xPik=1=2 py forallij.

Thm (Lupini, Man¢inska, Roberson). G =4, H & AgP = PAy,
for some quantum permutation matrix P.

This is similar to

G=H<< AgP =PAy (isomorphism),
G =y H& AgD = DAy (fractional isomorphism).
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Bilabelled graphs

Definition.
A (k, k)-bilabelled graph is a triple F = (F,u, v) where

® Fis a graph;
° u—(ug,..., u), v=_(vq,..., Vi) € V(F)k
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Bilabelled graphs

Definition.
A (k, k)-bilabelled graph is a triple F = (F,u, v) where

® Fis a graph;
° u—(ug,..., u), v=_(vq,..., Vi) € V(F)k

Example. F = (Kq, (1,2),(2,2)).
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How to draw bilabelled graphs
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How to draw bilabelled graphs

A bilabelled graph is planar if it can be drawn with no crossings.
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Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

Remark. hom(F, G) = sum of the entries of Fg.

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

Remark. hom(F, G) = sum of the entries of Fg.

— @
NN J

Example. A = (K, (1), (2))

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

Remark. hom(F, G) = sum of the entries of Fg.

— @
NN J

Example. A = (K, (1), (2))

(AG)gq =

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

Remark. hom(F, G) = sum of the entries of Fg.

Example. A = (Ko, (1),(2)) | >

1 if gg’ € E(G),
A ;] —
( G)g’g {O otherwise.

16 /37



Homomorphism matrices

Let G be a graph and F = (F,u,v) a (k, k)-bilabelled graph.

Definition. (G-homomorphism matrix of F)
The (g1...9x, 97 - .- gy)-entry of the homomorphism matrix Fg

IS . .
[{homs @ : F— G | @(ui) = gi, @(vj) =gj Vi,j}|.

Remark. hom(F, G) = sum of the entries of Fg.

Example. A = (Ko, (1),(2)) | >

1 if gg’ € E(G),
A ;] —
( G)g’g {O otherwise.

So Ag is the adjacency matrix of G.
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Operations on bilabelled graphs: Series composition
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Operations on bilabelled graphs: Parallel composition

Theorem. For a graph G and bilabelled graphs F, F/,

Fc OF; = (FOF),
where Fg ® F; is the entrywise product, and F® F is defined as

— 1N
:Uti

Other operations: transposition and cyclic permutations.
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The class of bilabelled graphs Py

Definition. For k € N, define
(1] QE to be the set of all minors of Cy;
® Q7 to be the set of all minors of My;
© 9, =900 U9}

Then Py is the class of (k, k)-bilabelled graphs generated by the
elements of Qy under

® series composition,
® parallel composition with the elements of QE,
® transpose,

® and cyclic permutations.

Definition. P, ={F : 3(F, u,v) € Py}
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What have we done and what is next?
We have:

° Q]é — minimal matrix algebra over C that contains
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We have:

° Q]é — minimal matrix algebra over C that contains
homomorphism matrices of all atomic graphs in Q.

o @é is unital, self-adjoint, contains J, closed under cyclic
permutations of labels, and closed under Schur product with
homomorphism matrices of all atomic graphs in QE.

Theorem. G =p_H < there is an isomorphism @é — Q]é.
Next:

e \We apply NPA hierarchy to (G, H)-isomorphism game and get
a relaxation of quantum isomorphism for each k € N.

® For each k € N, the feasibility of the k" level gives an
isomorphism Q]é — Q'é.

® The other direction works too.
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NPA hierarchy (intuition)

Let k € N. For all £ <k, define

’wglhl---gehe> = E91h1Egzh2 e Egehe |ll)>
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NPA hierarchy (intuition)

Let k € N. For all £ <k, define

M)glhl---gehe> = E91h1E92h2 e Egehe |ll)>

and let R be the Gram matrix of these vectors.

Observation: R will be be psd and its entries will satisfy some
linear constraints.

This gives rise to a semidefinite program — NPA hierarchy.
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NPA hierarchy for the isomorphism game

Let £ = V(G) x V(H).
A matrix R € My<«(C) is a certificate for the k'™ level of the
NPA hierarchy for the (G, H)-isomorphism game if

® R=>=0,

(2] sz,s — 1,

©® R, depends only on the equivalence class of sRt,

(4] :Z:}L’jQS(g,h/)sCt.:: EZ:g’:Rs(g’Jl)sCt.:: gzssﬁtv

@ for s,t € ZSK, if gh, g'h’/ occur consecutively in sRt and
rel(g, g’) # rel(h, h'), then Rs ¢ = 0.
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NPA hierarchy for the isomorphism game

Let ¥ = V(G) x V(H).
A matrix R € My<«(C) is a certificate for the k'™ level of the
NPA hierarchy for the (G, H)-isomorphism game if

O R=-0,

(2] st,s — 1,

©® R, depends only on the equivalence class of sRt,

(4] Zi:h/ sz(g,h/)s’,t — Zz:gﬂ j{S(g/Jl)S/,t — gzss’jn

@ for s,t € ZSK, if gh, g'h’/ occur consecutively in sRt and

rel(g, g’) # rel(h, h'), then Rs ¢ = 0.

Thm. (G, H)-isomorphism game has a perfect quantum strategy iff
there is a certificate for the k" level of the NPA hierarchy, k € N.
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Completely positive maps

A linear map @: M, (C) — M, (C) is positive if ®(X) is positive
for all positive X.
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otherwise.
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Completely positive maps

A linear map @: M, (C) — M, (C) is positive if ®(X) is positive
for all positive X.

A linear map @: M,,,(C) — M, (C) is completely positive if
I ® @ is positive for all r € N.

The Choi matrix of a linear map ®: M;;,(C) — M, (C) is

m
Co = Z Eij & (D(Eij) S an(C),
1,j=1

where Ej; denotes the matrix that is 1 at the (i,j)-th entry and 0
otherwise.

Thm (Choi, 1975). @ is completely positive < Cq is positive.
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Constructing a completely positive map

We use a principal submatrix of a certificate R for the k" level of
the NPA hierarchy as the Choi matrix of a linear map and show
that this is level-k quantum isomorphism.
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Constructing a completely positive map

We use a principal submatrix of a certificate R for the k" level of
the NPA hierarchy as the Choi matrix of a linear map and show
that this is level-k quantum isomorphism.

Taking the Choi matrix of a level-k quantum isomorphism we can
reconstruct a certificate for the k' level of the NPA hierarchy.

® Let R be a solution for the k" level of NPA.

® Take C to be the principal submatrix of R indexed by
Tk = (V(G) x V(H))k.

® Define © : My, (g yx(C) — My (11)x(C) to be the linear map
with Choi matrix G, i.e.,

OXnw = D Cgnighglhigin Xo.o’
g.g’eV(G)¥k

O The constraints on R translate into constraints on the map ©.
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Quantum isomorphism maps

Definition. A linear map @ : My, (g x(C) — My, (11)x(C) is a
level-k quantum isomorphism map if
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Quantum isomorphism maps

Definition. A linear map @ : My (g« (C) — My, (11)x(C) is a
level-k quantum isomorphism map if

0 ® is completely positive;

) = 1= ®*(I); (thus @ is unital and trace-preserving)
J) =] = ®*(]); (thus @ is sum-preserving)

Fg ) Fy for all F € Qy;

O(1
of
O
®(Fg ©®X) =F @ @(X) for all F € QF, X € My (g)(C);
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Quantum isomorphism maps

Definition. A linear map @ : My (g« (C) — My, (11)x(C) is a
level-k quantum isomorphism map if

0 ® is completely positive;
O(I) =1 = ®*(I); (thus @ is unital and trace-preserving)
DO(]) =] = D*(]); (thus @ is sum-preserving)
®(Fg) = Fy for all F € Qy;
O(Fg ®X) =Fyy © ©(X) for all F € QF, X € My, (g x(C);
D

X%) = D(X)° for all “cyclic permutations” o.

Lemma. Such a map will also satisfy ®(Fg) = Fy for all F € Py..

Corollary. The existence of such a map implies G = H.

Converse requires some previous results and a bit of combinatorics.
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Recap

The k'™ level of the NPA hierarchy for the
(G, H)-isomorphism game is feasible

0

There exists a level-k quantum
isomorphism map from G to H

0

G and H are homomorphism
indistinguishable over Py

26 /37



Corollary

Corollary. G =4 H if and only if G =p H, where P = U2 ;Py.
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Corollary

Corollary. G =4 H if and only if G =p H, where P = U2 ;Py.

All that is left is to show that P is the class of all planar graphs.

Proof that P C planar graphs: All generators of Py are planar,
all operations preserve planarity.
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Proof that P O planar graphs

Lemma. Each Py is minor-closed, and thus so is each Py and P.
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Proof that P O planar graphs

Lemma. Each Py is minor-closed, and thus so is each Py and P.

Lemma. The class Py contains the k x k grid.

Proof.

v vy Gk

Well-known: Every planar graph is the minor of some k x k grid.
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Some remarks/questions

® Py has treewidth bounded by 3k — 1. This implies there is a
randomized poly time algorithm for determining if G =p, H,
and thus whether the k™ level of the NPA hierarchy for the
(G, H)-isomorphism game is feasible.
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Some remarks/questions

® Py has treewidth bounded by 3k — 1. This implies there is a
randomized poly time algorithm for determining if G =p, H,
and thus whether the k™ level of the NPA hierarchy for the
(G, H)-isomorphism game is feasible.

® There are graphs G and H of size < 72k? that are not
quantum isomorphic, but the k" level of the NPA hierarchy is
feasible for the (G, H)-isomorphism game.

® Can we obtain a better description of the classes Py.?
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Thank you!



The hierarchy of Navascués,
Pironio, and Acin (NPA)



CHSH game, X =Y = A = B ={0, 1}. Deterministic strategies M.:

1 1 1 1 1

1

1

1
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K =

1
4

1
1 1

1 1

1 11

1

1

1

1

Representing the CHSH game as a matrix K yields

CHSH game, X =Y = A = B ={0, 1}. Deterministic strategies M.:

1




CHSH game, X =Y = A = B ={0, 1}. Deterministic strategies M.:

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Representing the CHSH game as a matrix K yields
1 11

1
1 1 1
The classical value is suppq (K, M) = suppq TrIK*M] = 3/4.
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Nonlocal games
Def. A nonlocal game is a 6-tuple (X,Y, A, B, 7, V), where
® X, Y, A, and B are finite and nonempty sets,
® e P(X xY)is a probability vector, and
® V:AXBxXxY—{0,1}is a predicate.

The sets X, Y are questions and A, B are answers. The predicate
V(a, blx,y) determines whether the players win or lose.
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Nonlocal games
Def. A nonlocal game is a 6-tuple (X,Y, A, B, 7, V), where
® X, Y, A, and B are finite and nonempty sets,
® e P(X xY)is a probability vector, and
® V:AXBxXxY—{0,1}is a predicate.
The sets X, Y are questions and A, B are answers. The predicate
V(a, blx,y) determines whether the players win or lose.

We can think of strategies as being represented by operators
M e L(R* @ RY, R @ RB).

The value M(aq, b|x,y) represents the probability that Alice and
Bob answer (x,y) with (a, b).

The probability that M wins a game is

Z (X, y) Z V(a, blx,y)M(a, blx,y) = (K, M),
(x,y)eXxY (a,b)eAXB

where K(a, blx,y) = t(x,y)V(a, blx, y).
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Commuting measurement strategies

An operator M represents a commuting measurement strategy
if there exists a Hilbert space H, a unit vector u € H, and
projection operators

{Px:xeX,aeA} and {QY:yeY,beB}

acting on J such that the follwoing are satisfied:

(L ZaEA a = lg¢ and ZbeB Q%Zlﬂ{,XEX,UGY,
® [P%,Q{1=0,xeX,yeY,acAbeB,

® M(a, blx,y) = (u, PXQJu), x e X,y €Y, ac A, beB.
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Commuting measurement strategies

An operator M represents a commuting measurement strategy
if there exists a Hilbert space H, a unit vector u € H, and
projection operators

{Px:xeX,aeA} and {QY:yeY,beB}

acting on J such that the follwoing are satisfied:
(L ZaEA a = lg¢ and ZbeB Q% =1y, xe X, yey,
® [P%,Q{1=0,xeX,yeY,acAbeB,
® M(a, blx,y) = (u, PXQJu), x e X,y €Y, ac A, beB.

A commuting measurement value of game G is

w(G) = sup (K, M),
Mee

where K is defined from G as before and C is the class of
commuting measurement strategies.
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1st level of the NPA hierarchy (intuition)
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For a commuting measurement strategy M, we would like to
capture the numbers M(a, blx, y) = (u, PXQPu).
We can consider the Gram matrix of the vectors:

{WU{Pfu:xe X, ae A}U{Qju:y€Y,b e B}.

Let IS = (X x A) U (Y x B) U{e).
Suppose that R € L((ngl, (ngl). We observe the following:
® R(e,e) =1, (uwis unit)
® > .caR((x,a),s)=R(e s)and 3} A R(s, (x,a)) =R(s, e),
Y ep R((Y.b),s) = R(e,s) and Y peg R(s, (y, b)) = Rs, ¢),

(summing over operators in measurements is identity)

® R((x,a),(x,¢))=0,xeX,a,ceA, a#c,
R((y,b),(y,d)) =0,y €Y,b,deB, b=#d,
(PX and PX, QF and QY are orthogonal)

@ R((z,¢), (z,¢)) =R(g, (z,¢)) =R((z,¢), ), (P*=P)
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1st level of the NPA hierarchy (intuition)

For a commuting measurement strategy M, we would like to
capture the numbers M(a, blx, y) = (u, PXQPu).
We can consider the Gram matrix of the vectors:

{WuU{Pu:xe X, ac AJUu{Qilu:ycY,bcB}
a b

Let IS = (X x A) U (Y x B) U{e).
Suppose that R € L((ngl, (ngl). We observe the following:
® R(e,e) =1, (uwis unit)
® > .caR((x,a),s)=R(e s)and 3} A R(s, (x,a)) =R(s, e),
Y ep R((Y.b),s) = R(e,s) and Y peg R(s, (y, b)) = Rs, ¢),

(summing over operators in measurements is identity)
® R((x,a),(x,¢))=0,xeX,a,ceA, a#c,
R((y,b),(y,d)) =0,y €Y,b,deB, b #d,
(PX and PX, QF and QY are orthogonal)
O R((z,¢),(z,¢c)) =R(e, (z,¢)) =R((z,¢c), €), (P?=P)
® R((x,a), (y,b)) =R((y,b), (x,a)). (commutativity)
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1st level of the NPA hierarchy (intuition)

Let C1 be the class containing all strategies M for which there is a
positive semidefinite R such that M(qa, b|x,y) = R((x, a), (y, b)).
We have

w(G) = sup (K,M) < sup (K, M).
MeC MeC,
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1st level of the NPA hierarchy (intuition)

Let C1 be the class containing all strategies M for which there is a
positive semidefinite R such that M(qa, b|x,y) = R((x, a), (y, b)).
We have

w(G) = sup (K,M) < sup (K, M).
MeC MeC,

If we define a Hermitian operator H € L(C=, c=™) by

H((x, @), (9, b)) = H((y, b), (x, @)) = Slx.y)V(a, blx. y)

we get
(K, M) = (H, R),
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1st level of the NPA hierarchy (intuition)

Let C1 be the class containing all strategies M for which there is a
positive semidefinite R such that M(qa, b|x,y) = R((x, a), (y, b)).
We have

w(G) = sup (K,M) < sup (K, M).
MeC MeC,

If we define a Hermitian operator H € L(C=S, cE™) by

H((x, @), (9, b)) = H((y, b), (x, @)) = Slx.y)V(a, blx. y)

we get
(K, M) = (H, R),

which gives us a semidefinite program, where we optimize (H, R)
over positive semidefinite R satisfying (affine) linear constraints
given in items 1-5 above.
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k™" level of the NPA hierarchy (intuition)

In the k" level of the NPA hierarchy we consider operators R
indexed by LSK satisfying conditions similar to 1-5.

Then the class Cy contains all strategies M for which there exists
such admissible operator R. We have:

C12C2C2---2C.

Thm. The following are equivalent:
® M is a commuting measurement strategy.
e M € @y for every k.

Equivalently:

C= ﬁ Cxk.
k=1
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