C^* -algebras*

Peter Zeman

Contents

1	Introduction	2
2	Semigroups, monoids, groups	2
	2.1 Semigroups \ldots	2
	2.2 Monoids	5
	2.3 Groups	5
3	Vector spaces, algebras	6
	3.1 Vector spaces	6
	3.2 Algebras	8
	3.3 C*-algebras \ldots	10
4	The spectrum	14
	4.1 Unital algebras	14
	4.2 General spectrum	15
5	Representations	19
	5.1 Gelfand representation	20
	5.2 GNS-construction	30

^{*}Based on the lectures by Tristan Bice.

1 Introduction

C*-algebra is a set together with operations: sum, product, scalar product, involution, norm. Simple examples include the complex numbers \mathbb{C} , matrix algebra $M_n(\mathbb{C})$, algebra of continuous functions $C([0,1],\mathbb{C})$. So, C*-algebras can be non-commutative or infinite dimensional.

C*-algebras provide an abstract way of investigating seemingly different objects like matrices and continuous functions. These two examples give us two different viewpoints:

C*-algebras \approx infinite dimensional matrices,

C*-algebras \approx non-commutative topology.

By adding extra structure, one can arrive to other objects, e.g., quantum groups, non-commutative geometry, von Neumann algebras, etc.

2 Semigroups, monoids, groups

2.1 Semigroups

Definition 2.1. A semigroup (S, \cdot) is a set S together with a binary operation \cdot on S, which is associative, i.e., for all $a, b, c \in S$,

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

We will also write just abc = a(bc) = (ab)c.

Semigroups are the most basic kind of algebraic structure. They are the building blocks of other structures like C*-algebras.

Example 2.2. • $(\mathbb{C}, +)$ and (\mathbb{C}, \cdot) are semigroups.

- (\mathbb{C}, \odot) , where $a \odot b = a^2 b^2$ is not a semigroup.
- (X^X, \circ) is a semigroup. Here, $X^X = \{f : X \to X\}$ and \circ is the composition of functions $(f \circ g)(x) = f(g(x))$.

Definition 2.3. A semigroup S is *commutative* or *abelian* if, for all $a, b \in S$,

$$ab = ba$$

Example 2.4. • $(\mathbb{C}, +)$ and (\mathbb{C}, \cdot) are commutative.

- $(M_n(\mathbb{C}), +)$ is commutative, but $(M_n(\mathbb{C}), \cdot)$ is not.
- (X^X, \circ) is not commutative if $|X| \ge 2$.

Definition 2.5. An *action* of a semigroup S on a set X is a product $: S \times X \to X$ such that

$$s \cdot (t \cdot x) = (st) \cdot x$$

Example 2.6. • If S is a semigroup, then S acts on $X = S \times S$ by

$$s \cdot (a, b) = (sa, sb).$$

• (X^X, \circ) acts on X by

$$f \cdot x = f(x).$$

Definition 2.7. A subsemigroup of semigroup S is a subset $P \subseteq S$ such that $PP \subseteq P$, i.e.,

 $p \in P$ and $q \in P \implies pq \in P$.

In other words, P is a subsemigroup of S if and only if P is a semigroup itself under the same semigroup operation.

Example 2.8. • $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are subsemigroups of \mathbb{C} with respect to both \cdot and +.

• $-\mathbb{N}$ is a subsemigroup of \mathbb{C} under +, but not under multiplication.

Definition 2.9. • A binary relation \prec on a set S is

- transitive if $a \prec b \prec c \implies a \prec c$,
- reflexive if $a \prec a$ for every $a \in S$,
- antisymmetric if $a \prec b \prec a \implies a = b$.
- A transitive relation is an *order*.
- A transitive reflexive relation is a *preorder*.
- An antisymmetric preorder is a *partial order*.
- A partial order \prec is *total* if all pairs $a, b \in S$ are comparable, i.e.,

$$a \prec b$$
 or $b \prec a$.

Example 2.10. • \subseteq is a partial order on all sets.

• \leq is a total order on \mathbb{R} .

Given a semigroup S and a subsemigroup $P \subseteq S$, define

$$a \prec b \iff a \in Pb$$

Lemma 2.11. The relation \prec on S is transitive.

Proof. If $a \prec b \prec c$, then we have $p, q \in P$ with a = pb and b = qc. So,

$$a = pb = p(qc) = (pq)c.$$

As P is a subsemigroup, $pq \in P$. Thus, $a \in Pc$ and hence $a \prec c$.

Example 2.12. • $\mathbb{R}_+ = \{r \in \mathbb{R} : r \geq 0\}$ form an additive subsemigroup of \mathbb{R} . The associated \prec is

 $a \prec b \iff a \in \mathbb{R}_+ + b \iff a - b \in \mathbb{R}_+ \iff a - b \ge 0 \iff a \ge b.$

So $\prec = \geq$ is the opposite of the usual order on \mathbb{R}_+ .

• Consider the multiplication on S = P = (0, 1). Then

$$a \prec b \iff a \in Pb \iff \frac{a}{b} \in P \iff \frac{a}{b} < 1 \iff a < b.$$

So, $\prec = \langle$ is the usual strict order on (0, 1).

Definition 2.13. A map $\phi: S \to T$ between semigroups is a homomorphism if $\phi(ab) = \phi(a)\phi(b)$.

- **Example 2.14.** The modulus $\phi : \mathbb{C} \to \mathbb{R}_+$, defined by $\phi(a) = |a|$ is a multiplicative homomorphism since |ab| = |a||b|.
 - The modulus is not an additive homomorphism.
 - The determinant det: $M_n(\mathbb{C}) \to \mathbb{C}$ is a multiplicative homomorphism since det A det $B = \det AB$.

Definition 2.15. A *-semigroup is a semigroup together with an operation $a \mapsto a^*$ such that

$(ab)^* = b^*a^*,$	(antihomomorphism)
$a^{**} = a.$	(involution)

Example 2.16. • Any commutative semigroup is a *-semigroup with $a^* = a$.

• $M_n(\mathbb{C})$ is a *-semigroup.

Definition 2.17. We call an element of a *-semigroup S

- normal if $aa^* = a^*a$,
- self-adjoint if $a = a^*$,
- positive if $a = bb^*$, for some $b \in S$.

Lemma 2.18. Every positive element is self-adjoint. Every self-adjoin element is normal.

Proof. Positive implies self-adjoint:

$$a = bb^* \implies a^* = (bb^*)^* = (b^*)^*b^* = bb^* = a.$$

Self-adjoint implies normal:

$$a = a^* \implies aa^* = aa = a^*a.$$

Lemma 2.19. An element a is positive if and only if $a = b^*b$, for some $b \in S$.

Proof. If $a = bb^* = b^{**}b^*$, then $a = c^*c$ for $c = b^*$.

Example 2.20. Consider (\mathbb{C}, \cdot) with $a^* = \overline{a}$ (complex conjugation).

- Since multiplication is commutative, every element in \mathbb{C} is normal.
- The self-adjoint elements in \mathbb{C} are exactly \mathbb{R} .
- The positive elements in \mathbb{C} are exactly \mathbb{R}_+ .

If we consider $(\mathbb{C}, +)$ instead, the normal and self-adjoint elements are the same as for (\mathbb{C}, \cdot) . However, the positive elements are \mathbb{R} .

Definition 2.21. Let S be a semigroup.

- We call an element $0 \in S$ absorbing if, for all $a \in S$, 0a = 0 = a0.
- We call an element $1 \in S$ *identity* if, for all $a \in S$, 1a = a = a1.

Note that absorbing elements and identities are unique.

2.2 Monoids

Definition 2.22. A monoid is a semigroup M with an identity $1 \in M$. We call $b \in M$ an *inverse* of $a \in M$ if

$$ba = 1 = ab.$$

In this case we say a is *invertible* and often write $b = a^{-1}$. Note that inverses are unique and $(a^{-1})^{-1} = a$. The invertible elements form a submonoid of M.

Example 2.23. • $(\mathbb{C}, +, 0)$ is a monoid.

• $(\mathbb{C} \setminus \{0\}, \cdot, 1)$ is a monoid.

• $(M_n(\mathbb{C}), \cdot, I)$, where I is the identity matrix, is a monoid.

Definition 2.24. A monoid action is a semigroup action $: M \times X \to X$ such that for all $x \in X$, $1 \cdot x = x$.

Note that if $a \in M$ has an inverse $a^{-1} \in M$, then $ax = y \implies a^{-1}y = x$.

2.3 Groups

Definition 2.25. A group is a monoid G where every $g \in G$ has an inverse $g^{-1} \in G$.

Example 2.26. Since $(gh)^{-1} = h^{-1}g^{-1}$ and $(g^{-1})^{-1} = g$, every G is a *-semigroup with $g^* = g^{-1}$. We determine the normal, self-adjoint and positive elements in G

- Normal elements are the whole G since $g^{-1}g = 1 = gg^{-1}$.
- Self-adjoin elements are elements of order 2 since $g^{-1} = g \iff g^2 = 1$.
- Positive is only the identity element since $1 = gg^{-1}$.

Example 2.27. $\operatorname{GL}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : \det(A) \neq 0\}$ is a group and $\operatorname{SL}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : \det(A) = 1\}$ is its subgroup.

Definition 2.28. We call $H \subseteq G$ a subgroup of a group G if

 $1 \in H$, $HH \subseteq H$, and $H^{-1} \subseteq H$.

Proposition 2.29. A subset $H \subseteq G$ of a group G is a subgroup if and only if $HH^{-1} \subseteq H \neq \emptyset$.

Proof. If H is a subgroup, then $HH^{-1} \subseteq HH \subseteq H$ and $1 \in H$, so $S \neq \emptyset$.

Conversly, assume $HH^{-1} \subseteq S \neq \emptyset$. Taking any $h \in H$, we have $1 = hh^{-1} \in HH^{-1} \subseteq H$. Thus, $H^{-1} = 1H^{-1} \subseteq HH^{-1} \subseteq H$. So, $H = (H^{-1})^{-1} \subseteq H^{-1}$ and hence $HH \subseteq HH^{-1} \subseteq H$. \Box

Theorem 2.30. If G is a group then $H \subseteq G$ is a subgroup if and only if $H(G \setminus H) \subseteq G \setminus H \neq G$.

Proof. Suppose that H is a subgroup, $h \in H$ and $g \in G \setminus H$. Then $hg \in H$ would imply $g \in h^{-1}H \subseteq H^{-1}H \subseteq HH \subseteq H$. This contradicts $g \in G \setminus H$. So $hg \notin H$ and hence $H(G \setminus H) \subseteq G \setminus H$.

Conversely, assume that $H(G \setminus H) \subseteq G \setminus H \neq G$. If $1 \notin H$, then taking any $h \in H$, we have $h = h1 \in H(G \setminus H) \subseteq G \setminus H$, contradicting $h \in H$. Thus $1 \in H$.

If $h \in H$ and $h^{-1} \notin H$, then $1 = hh^{-1} \in H(G \setminus H) \subseteq G \setminus H$. This cotradicts $1 \in H$. So, $H^{-1} \subseteq H$.

Now, if $h, k \in H$ and $hk \notin H$, then $k = h^{-1}hk \in H^{-1}(G \setminus H) \subseteq H(G \setminus H) \subseteq G \setminus H$, contradicting $k \in H$. Thus, $HH \subseteq H$ and hence H is indeed a subgroup of G.

3 Vector spaces, algebras

3.1 Vector spaces

Definition 3.1. A *(complex) vector space* is a commutative group (V, +, 0) together with a scalar product $(\alpha, v) \mapsto \alpha v \colon \mathbb{C} \times V \to V$ such that

$$\begin{aligned} \alpha(v+w) &= \alpha v + \alpha w, \\ (\alpha+\beta)v &= \alpha v + \beta v, \\ \alpha(\beta v) &= (\alpha\beta)v, \\ 1v &= v. \end{aligned}$$

In other words, $v \mapsto \alpha v$ is a homomorphism $(V, +) \to (V, +)$, for each $\alpha \in \mathbb{C}$, $\alpha \mapsto \alpha v$ is a homomorphism $(\mathbb{C}, +) \to (V, +)$, for each $v \in V$, and $(\alpha, v) \mapsto \alpha v$ is a monoid action of $(\mathbb{C}, \cdot, 1)$ on V.

Example 3.2. \mathbb{C} , $\mathbb{C} \times \mathbb{C}$, $M_n(\mathbb{C})$, $C(X, \mathbb{C}) = \{$ continuous $X \to \mathbb{C} \}$.

Definition 3.3. We call $W \subseteq V$ a *subspace* of a vector space V if

 $W \neq \emptyset$, $\mathbb{C}W \subseteq W$, and $W + W \subseteq W$.

Subspace is also a subgroup since

$$\{\mathbf{0}\} = 0W \subseteq \mathbb{C}W \subseteq W$$
 and $-W = (-1)W \subseteq \mathbb{C}W \subseteq W$.

Lemma 3.4. W is a subspace if and only if $\emptyset \neq W = W + W = \mathbb{C}W$.

Proof. $W = W + W = \mathbb{C}W$ implies $W + W \subseteq W$ and $\mathbb{C}W \subseteq W$. Conversely, assume that $W + W \subseteq W$ and $\mathbb{C}W \subseteq W$ hold. Then in fact = holds since $W = 1W \subseteq \mathbb{C}W$ and $W = \mathbf{0} + W \subseteq W + W$.

Lemma 3.5. If \mathcal{F} is a family of subspaces, then $\bigcap \mathcal{F}$ is also a subspace.

Proof. Take $v, w \in \bigcap \mathcal{F}$. This means that $v, w \in W$, for every $W \in \mathcal{F}$. As W is a subspace, $v + w \in W$. As W was arbitrary, $v + w \in \bigcap \mathcal{F}$. Thus, $\bigcap \mathcal{F} + \bigcap \mathcal{F} \subseteq \bigcap \mathcal{F}$. Likewise, $\mathbb{C} \bigcap \mathcal{F} \subseteq \bigcap \mathcal{F}$.

Definition 3.6. The span of any $S \subseteq V$ is the smallest subspace containing S, i.e.,

 $\operatorname{span}(S) = \bigcap \{ W : S \subseteq W \text{ and } W \text{ is a subspace of } V \}.$

Equivalently, $\operatorname{span}(S)$ is generated by S, i.e.,

span(S) =
$$\left\{\sum_{k=1}^{n} \alpha_k s_k : \alpha_1, \dots, \alpha_n \in \mathbb{C} \text{ and } s_1, \dots, s_n \in S \right\}$$
.

Note that the *exception* is $S = \emptyset$, in which case span $(\emptyset) = \{0\}$.

Definition 3.7. The *dimension* of V is the smallest cardinality of a spanning subset, i.e.,

$$\dim(V) = \min\{|S| : \operatorname{span}(S) = V\}.$$

Example 3.8. • dim($\{0\}$) = 0, dim(\mathbb{C}) = 1, dim($\mathbb{C} \times \mathbb{C}$) = 2, dim($M_2(\mathbb{C})$) = 4.

• Some vector spaces have infinite dimession, e.g., the space $c_{00}(\mathbb{C})$ of sequences of complex numbers that are eventually zero,

 $c_{00}(\mathbb{C}) = \{ (\alpha_1, \alpha_2, \dots) : \exists n \in \mathbb{N} \ \forall k \ge n \ (\alpha_k = 0) \}.$

Note that $c_{00}(\mathbb{C}) = \bigcup_{n \in \mathbb{N}} V_n$, where $V_n \approx \mathbb{C}^n$ is the subspace

$$V_n = \{(\alpha_1, \alpha_2, \dots) : \forall k \ge n \ (\alpha_k = 0)\}.$$

Since (V_n) is strictly incerasing, with respect to \subseteq , $c_{00}(\mathbb{C})$ has infinite dimension.

Definition 3.9. We call $S \subseteq V$ linearly independent if S has no proper spanning subset, i.e.,

$$R \subsetneq S \implies \operatorname{span}(R) \subsetneq \operatorname{span}(S).$$

Equivalently, $S \subseteq V$ is linearly independent if and only if whenever we have finite distinct $s_1, \ldots, s_n \in S$ and finite $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$,

$$\alpha_1 s_1 + \cdots + \alpha_n s_n = 0 \implies \alpha_1 = \cdots = \alpha_n = 0.$$

Definition 3.10. A basis $B \subseteq V$ is linearly independent spanning set, i.e. V = span(B).

Theorem 3.11 (Kuratowski-Zorn Lemma). If (\mathbb{P}, \leq) is a partially ordered set such that every totally ordered subset $\mathbb{T} \subseteq \mathbb{P}$ has an upper bound $p \in \mathbb{P}$, then \mathbb{P} has a maximal element.

Proposition 3.12. Every vector space has a basis.

Proof. Let $\mathbb{P} = \{S \subseteq V : S \text{ is linearly independent}\}$. Any totally ordered $\mathbb{T} \subseteq \mathbb{P}$ has an upper bound. Specifically, $S = \bigcup \mathbb{T}$ is linearly independent. If not, then we would have $s \in S$ with $s \in \operatorname{span}(S \setminus \{s\})$. But then $s \in \operatorname{span}(F)$, for some finite $F \subseteq S \setminus \{s\}$. For each $f \in F \cup \{s\}$, we have some $T \in \mathbb{T}$ with $f \in T$. Since \mathbb{T} is totally ordered and F is finite, these T's have a maximum, i.e., we have some $T \in \mathbb{T}$ with $F \cup \{s\} \subseteq T$. But then $s \in \operatorname{span}(F) \subseteq \operatorname{span}(T \setminus \{s\})$, contradicting $T \in \mathbb{T}$.

By Theorem 3.11, there is a maximal linearly idependent subset $S \subseteq V$. By maximality, if $v \in V \setminus S$, then $S \cup \{v\}$ is not linearly independent, so $v \in \text{span}(S)$. Since v was arbitrary, $V \setminus S \subseteq \text{span}(S)$. Certainly, $S \subseteq \text{span}(S)$, so, $V = S \cup (V \setminus S) = \text{span}(S)$.

Proposition 3.13. If $B \subseteq V$ is a basis of a vector space V, then $\dim(V) = |B|$.

- **Example 3.14.** dim $(c_{00}(\mathbb{C})) = |\mathbb{N}|, c_{00}(\mathbb{C})$ has standard basis $(e_n)_{n \in \mathbb{N}}$, where $e_n = (0, \ldots, 0, 1, 0, \ldots)$ with 1 on the *n*th position.
 - $(e_n)_{n\in\mathbb{N}}$ is not a basis of $c_0(\mathbb{C}) = \{(\alpha_1, \alpha_2, \dots) : \alpha_n \to 0\}$ since $(1, 1/2, 1/3, \dots) \notin$ span $(e_n)_{n\in\mathbb{N}}$. In fact, dim $(c_0(\mathbb{C})) = |\mathbb{R}| > |\mathbb{N}|$.

Definition 3.15. Let V and W be vector spaces. We call $T: V \to W$ linear if T is a vector space homomorphism, i.e.,

$$T(v+w) = T(v) + T(w),$$

$$T(\alpha v) = \alpha T(v).$$

Let $\mathcal{L}(V) = \{T \in V^V : T \text{ is linear}\}$, where dim(V) = n. If we fix a basis of V, then there is a matrix representation M_T of T. So $T \mapsto M_T$ is a homomorphism from $(\mathcal{L}(V), \circ) \to (M_n(\mathbb{C}), \cdot)$. Since we can also define $T_M \in \mathcal{L}(V)$, for any $M \in M_n(\mathbb{C}), T \mapsto M_T$ is an *isomorphism*. Changing the fixed basis, changes the isomorphism.

Definition 3.16. An *inner product* is a map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ such that

$$\begin{split} \langle v+w,x\rangle &= \langle v,x\rangle + \langle w,x\rangle,\\ \langle \alpha v,w\rangle &= \alpha \langle v,x\rangle,\\ \langle v,w\rangle &= \overline{\langle w,v\rangle},\\ v\neq 0 \Rightarrow \langle v,v\rangle > 0. \end{split}$$

The map $v \mapsto \langle v, x \rangle$ is linear, for $x \in V$, and $\langle \cdot, \cdot \rangle$ is *conjugate-symmetric*. The map $v \mapsto \langle x, v \rangle$ is *conjugate-linear*.

Example 3.17. The standard inner product on \mathbb{C}^n is $\langle \cdot, \cdot \rangle \colon \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ defined by

$$\langle v, w \rangle = \sum_{i=1}^{n} v_i \overline{w_i}.$$

If $M \in M_n(\mathbb{C})$, then

$$\langle v, Mw \rangle = \langle M^*v, w \rangle,$$

where M^* is the conjugate transpose of M. This is the * operation on matrices. Generally, if $\dim(V) < \infty$ and $\langle \cdot, \cdot \rangle$ is an inner product on V, then every $T \in \mathcal{L}(V)$ has unique *adjoint*, i.e., $T^* \in \mathcal{L}(V)$ such that

$$\langle v, Tw \rangle = \langle T^*v, w \rangle.$$

Definition 3.18. A *-vector space is a vector space V together with a map $*: V \to V$ such that

$$(v+w)^* = v^* + w^*,$$

$$(\alpha v)^* = \overline{\alpha} v^*.$$

In other words, $v \mapsto v^*$ is conjugate-linear. Note that (V, +, *) is a *-semigroup since $(v+w)^* = v^* + w^* = w^* + v^*$.

Example 3.19. \mathbb{C}^3 with $(\alpha_1, \alpha_2, \alpha_3)^* = (\overline{\alpha_1}, \overline{\alpha_2}, \overline{\alpha_3})$ is a *-vector space.

3.2 Algebras

Definition 3.20. A *-algebra is a *-vector space (A, +, *) and a *-semigroup $(A, \cdot, *)$ such that

$$(a+b)c = ac + bc$$
 and $(\alpha b)c = \alpha(bc)$.

In other words, $a \mapsto ac$ is linear, for each $c \in A$.

Lemma 3.21. The map $a \mapsto ca$ is linear.

Proof.

$$c(a+b) = (c(a+b))^{**} = ((a+b)^*c^*)^* = ((a^*+b^*)c^*)^*$$

= $(a^*c^*+b^*c^*)^* = ((ca)^*+(cb)^*)^* = ca+cb.$
 $c(\alpha a) = (c(\alpha a))^{**} = ((\alpha a)^*c^*)^* = (\overline{\alpha}a^*c^*)^* = (\overline{\alpha}(ca)^*)^* = \alpha ca.$

Example 3.22. • $M_n(\mathbb{C})$, or equivalently $\mathcal{L}(V)$, for dim $(V) < \infty$, is a *-algebra. • $C(X, \mathbb{C}), C(X, M_n(\mathbb{C}))$ are *-algebras.

Definition 3.23. A *metric* on a set X is a function $d: X^2 \to [0, \infty)$ such that

d(x,y) = d(y,x),	(symmetry)
$d(x,y) = 0 \iff x = y,$	(coincidence)
$d(x,y) \le d(x,z) + d(z,y).$	(triangle inequality)

Definition 3.24. A metric d on a vector space V is *compatible* if

$$\begin{aligned} d(v+x,w+x) &= d(v,w), & (\text{translation invariant}) \\ d(\alpha v,\alpha w) &= |\alpha| d(v,w). & (\text{homogeneous}) \end{aligned}$$

Definition 3.25. A function $\|\cdot\|: V \to [0, \infty)$ is a *norm* if

$\ v\ = 0 \implies v = 0,$	(definite)
$ v + w \le v + w ,$	(subadditive)
$\ \alpha v\ = \alpha \ v\ .$	(homogeneous)

Lemma 3.26. There is a norm $\|\cdot\|$ on V if and only if there is a compatible metric d on V.

Proof. Let d be a compatible metric on V. Define ||v|| = d(v, 0). The translation invariance gives

$$d(v, w) = d(v + (-w), w + (-w)) = d(v - w, 0) = ||v - w||.$$

Further,

$$\begin{split} 0 &= \|v\| = d(v,0) \iff v = 0, \\ \|\alpha v\| &= d(0,\alpha v) = d(\alpha 0,\alpha v) = |\alpha|d(0,v) = |\alpha|\|v\|, \\ \|v+w\| &= d(0,v+w) \le d(0,v) + d(v,v+w) = d(0,v) + d(0,w) = \|v\| + \|w\|. \end{split}$$

Thus, ||v|| = d(v, 0) is a norm.

Conversely, if $\|\cdot\|$ is a norm, then $d(v, w) = \|v - w\|$ is compatible.

$$0 = d(v, w) = ||v - w|| \iff v - w = 0 \iff v = w,$$

$$d(v, w) = ||v - w|| = |-1|||v - w|| = ||w - v|| = d(w, v),$$

$$d(v, w) = ||v - w|| = ||v - x + x - w|| \le ||v - x|| + ||x + w|| = d(v, x) + d(x, w).$$

Since d(v, 0) = ||v - 0|| = ||v||, these constructions are mutually inverse.

Definition 3.27. A normed space is a vector space together with a norm $\|\cdot\|$.

Definition 3.28. A normed *-algebra is a *-algebra A together with a norm $\|\cdot\|$ satisfying

$$\|ab\| \le \|a\| \|b\|, \qquad (submultiplicative)$$
$$\|a^*\| = \|a\|. \qquad (*-invariant)$$

3.3 C*-algebras

Definition 3.29. We call a sequence $(v_n)_{n \in \mathbb{N}} \subseteq V$ in a metric space V Cauchy if

$$\forall \varepsilon > 0 \; \exists k \in \mathbb{N} \; \forall j \ge k \; (d(v_j, v_k) < \varepsilon),$$

or, equivalently,

$$\forall \varepsilon > 0 \; \exists M \in \mathbb{N} \; \forall j, k \ge M \; (d(v_j, v_k) < \varepsilon).$$

V is complete if every Cauchy $(v_n) \subseteq V$ converges to some $w \in V$, i.e.,

$$\forall \varepsilon > 0 \; \exists k \in \mathbb{N} \; \forall j \ge k \; (d(v_j, w) < \varepsilon).$$

Example 3.30. \mathbb{R} and \mathbb{C} are complete with respect to d(v, w) = |v - w|.

Definition 3.31. A Banach space is a complete normed space. A Banach *-algebra is a complete normed *-algebra. A C*-algebra is a Banach *-algebra such that

$$||a^*a|| = ||a^*|| ||a||.$$
 (*-multiplicative)

Observation 3.32. *-invariant and *-multiplicative hold if and only if

$$||a^*a|| = ||a||^2. \tag{C*}$$

Example 3.33. For any set X and $f \in \mathbb{C}^X$, define $||f|| = \sup_{x \in X} |f(x)|$ and $f^* = \overline{f}$. Then

$$\ell^{\infty}(X) = \left\{ f \in \mathbb{C}^X : \|f\| < \infty \right\}$$

is a commutative C*-algebra. Each $f \in \ell^{\infty}(X)$ can be veiwed as a linear operator on

$$\ell^2(X) = \{g \in \mathbb{C}^X : \langle g, g \rangle < \infty \},\$$

the inner product spece where $\langle g, h \rangle = \sum_{x \in X} g(x) \overline{h(x)}$, namely

$$T_f g = f g$$

Moreover, $\langle fg,h\rangle = \langle g,\overline{f}h\rangle = \langle g,f^*h\rangle$ and $||f|| = \sup_{||g||_2=1} ||fg||_2$. We need to consider more general linear operators to obtain non-commutative C*-algebras.

Example 3.34. If X is a metric space, then

$$C^{b}(X) = \{ f \in \ell^{\infty}(X) : f \text{ is continuous} \}$$

is a C*-subalgebra of $\ell^{\infty}(X)$.

Proposition 3.35. In a normed space, f(x) = ||x|| defines a continuous function.

Proof. $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$. So, $||x|| - ||y|| \le ||x - y||$. Likewise, $||y|| - ||x|| \le ||y - x|| = ||x - y||$. So, $|||x|| - ||y||| \le ||x - y||$. Taking $y = x_n$, we see that $||x - x_n|| \to 0$ implies $|||x|| - ||x_n||| \to 0$.

Definition 3.36. For any linear map $T \in W^V$ between normed spaces, we define the *operator* norm of T as

$$||T|| = \sup_{||x|| \le 1} ||T(x)|| = \sup_{x \ne 0} \frac{||T(x)||}{||x||}.$$

This defines a norm.

Proposition 3.37. T is continuous if and only if T is bounded, i.e., $||T|| < \infty$.

Proof. If T is bounded and $x_n \to x$, then $T(x_n) \to T(x)$ since

$$||T(x_n) - T(x)|| = ||T(x_n - x)|| \le ||T|| ||x_n - x|| \to 0.$$

Conversely, if T is not bounded, we have $(x_n) \subseteq V^1$ with $||T(x_n)|| \to \infty$. Then

$$y_n = \frac{1}{\|T(x_n)\|} x_n \to 0$$

while

$$T(y_n) = \left\| T\left(\frac{1}{\|T(x_n)\|} x_n\right) \right\| = \frac{\|T(x_n)\|}{\|T(x_n)\|} = 1.$$

Thus $T(y_n) \not\rightarrow 0 = T(0)$ and hence T is not continuous.

We denote the bounded linear operators on a normed space V by

$$\mathcal{B}(V) = \{T \in \mathcal{L} : ||T|| < \infty\} = \{T \in V^V : T \text{ is linear and } ||T|| < \infty\}.$$

Theorem 3.38. If V is a Banach space the $\mathcal{B}(V)$ is a Banach algebra.

Proof. $\mathcal{B}(V)$ is a normed algebra, we need to show completeness. Let $(T_n) \subseteq \mathcal{B}(V)$ be Cauchy, i.e., $||T_m - T_n|| \to 0$ as $m, n \to \infty$. Then for each $v \in V$, we have $||T_m(v) - T_n(v)|| \leq ||T_m - T_n|| ||v|| \to 0$. So, the sequence $(T_n(v))$ is Cauchy. Since V is complete, we can define $T(v) = \lim T_n(v)$. Linearity of T follows from the linearity of each T_n . By Proposition 3.35, norm is continuous, and $||Tv|| \leq \sup_n ||T_n(v)|| \leq \sup_n ||T_n|| ||v||$. Thus $||T|| \leq \sup_n ||T_n|| < \infty$ since (T_n) is Cauchy. So, $T \in \mathcal{B}(V)$.

Definition 3.39. A sesquilinear form on a vector space V is a map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ that is linear in the first coordinate and conjugate-linear in the second, i.e.,

$$\begin{split} \langle v+w,x\rangle &= \langle v,x\rangle + \langle w,x\rangle,\\ \langle v,x+y\rangle &= \langle v,x\rangle + \langle v,y\rangle,\\ \langle \lambda v,x\rangle &= \lambda \langle v,x\rangle = \langle v,\overline{\lambda}x\rangle \end{split}$$

A sesquilinear form is *real/positive/strictly positive* if for all $x \in V \setminus \{0\}$, $\langle x, x \rangle \in \mathbb{R}/\mathbb{R}_+/\mathbb{R}_+ \setminus \{0\}$. Every sesquilinear form is *conjugate-symmetric*: $\langle x, y \rangle = \overline{\langle y, x \rangle}$. Inner product is strictly positive sesquilinear form. For a positive sesquilinear form, we define $||x|| = \sqrt{\langle x, x \rangle}$.

Theorem 3.40 (Caychy-Schwartz Inequality). For any positive sesquilinear form,

$$|\langle v, w \rangle| \le \|v\| \|w\|.$$

Proof. Since $\langle \cdot, \cdot \rangle$ is positive, $\langle z, z \rangle \ge 0$ for $z = \langle w, w \rangle v - \langle v, w \rangle w$. It sufficies to exaptd this using other inner product properties.

Corollary 3.41. In any inner product space, $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm.

Proof. $\|\cdot\|$ is homogeneous since $\langle \cdot, \cdot \rangle$ is sesquilinear. $\|\cdot\|$ is definite since $\langle \cdot, \cdot \rangle$ is positive definite. $\|\cdot\|$ is subadditive by Theorem 3.40.

Lemma 3.42. Inner product spaces are exactly normed spaces satisfying

$$2\|v\|^{2} + 2\|w\|^{2} = \|v + w\|^{2} + \|v - w\|^{2}.$$
 (parallelogram law)

Definition 3.43. A *Hilbert space* is a complete inner product space, i.e., complete with respect to

$$d(v,w) = \|v - w\| = \sqrt{\langle v - w, v - w \rangle}.$$

Example 3.44. $\ell^2(X) = \{g \in \mathbb{C}^X : \langle g, g \rangle < \infty\}$ is a Hilbert space where $\langle g, h \rangle = \sum_{x \in X} g(x) \overline{h(x)}$. By Theorem 3.40, this is well defined inner product:

$$\sum_{x \in X} |g(x)\overline{h(x)}| = \sum_{x \in X} |g(x)| |h(x)| \le \sqrt{\sum_{x \in X} |g(x)|^2} \sqrt{\sum_{x \in X} |h(x)|^2} < \infty.$$

Definition 3.45. We call a subset C of a vector space V convex if

 $\lambda \in [0,1]$ and $x, y \in C \implies \lambda x + (1-\lambda)y \in C$.

We call a subset C of a metric space V closed if

$$C \supseteq x_n \to y \implies y \in C.$$

Theorem 3.46. If H is a Hilbert space, then for any $v \in H$ and closed convex $C \subseteq H$, we can find a point $w \in C$ minimizing the distance to v, i.e.,

$$||v - w|| = \inf_{x \in C} ||v - x||.$$

Proof. Take a sequence $(x_n) \subseteq C$ with $||v - x_n|| \to d = \inf_{x \in C} ||v - x||$. So for $\varepsilon > 0$, we have $m \in \mathbb{N}$ such that $||v - x_n|| \leq d + \varepsilon$, for $n \geq m$. Then

$$\begin{aligned} \|x_n - x_m\|^2 &= \|x_n - v + v - x_n\|^2 \\ &= 2\|x_n - v\|^2 + 2\|v - x_m\|^2 - \|(x_n - v) - (v - x_m)\|^2 \quad \text{(parallelogram law)} \\ &= 2\|v - x_n\|^2 + 2\|v - x_m\|^2 - 4\left\|\frac{1}{2}(x_n + x_m) - v\right\|^2 \\ &\leq 2(d + \varepsilon) + 2(d + \varepsilon) - 4d = 4\varepsilon. \end{aligned}$$

Thus (x_n) is Cauchy and hence $x_n \to w$, for some $w \in H$. Since C is closed, we have $w \in C$. \Box

Definition 3.47. For a Hilbert space H and $S \subseteq H$, let

$$S^{\perp} = \{ y \in H : \forall s \in S \ (\langle s, y \rangle = 0) \}$$

be the orthogonal complement of S in H.

Corollary 3.48. If V is a closed subspace of a Hilbert space H, then $H = V + V^{\perp}$.

Proof. By Theorem 3.46, for any $x \in H$, there is $w \in V$ with $||x - w|| = \inf_{v \in V} ||x - v||$. Thus, for any $v \in V$, we have

$$\begin{split} \langle x - w, x - w \rangle &\leq \langle x - (w + v), x - (w + v) \rangle, \\ \langle y, y \rangle &\leq \langle y - v, y - v \rangle, \\ \langle y, y \rangle &\leq \langle y, y \rangle - \langle y, v \rangle - \langle v, y \rangle + \langle v, v \rangle. \\ 2\Re(\langle y, v \rangle) &\leq \langle v, v \rangle. \end{split}$$
(substituting $y = x - w$)

Replacing v with tv for $t \in \mathbb{R}$ or $t \in i\mathbb{R}$ shows $\langle y, v \rangle = 0$. Thus, $x = x - w + w = y + w \in V^{\perp} + V$.

Theorem 3.49 (Riesz Representation). If H is a Hilbert space, then every continuous linear $\phi \in \mathbb{C}^H$ is defined by

 $\phi(x) = \langle x, v \rangle$, for a unique $v \in H$..

Proof. Since ϕ is continuous, $V = \{x \in H : \phi(x) = 0\}$ is closed. Thus $H = V + V^{\perp}$. Note that V^{\perp} has dimension at most 1. If $V^{\perp} = \{0\}$, then V = H and we can take v = 0. Otherwise, take $w \in V^{\perp}$ with ||w|| = 1 and let $v = \overline{\phi(w)}w$. Then

$$\langle w, v \rangle = \left\langle w, \overline{\phi(w)}w \right\rangle = \phi(w) \langle w, w \rangle = \phi(w).$$

Also, for any $x \in V$,

$$\langle x, v \rangle = \phi(w) \langle x, w \rangle = 0 = \phi(x).$$

Thus, ϕ and $\langle \cdot, v \rangle$ agree on V and V^{\perp} and hence on H.

For uniqueness, suppose that $\langle x, v \rangle = \langle x, w \rangle$, for all $x \in H$. Then $\langle x, v - w \rangle = 0$, so $\langle v - w, v - w \rangle = 0$, and hence v - w = 0.

Theorem 3.50. For every bounded linear operator T on a Hilbert space H, there is another adjoint bounded linear operator T^* on H satisfying

$$\langle Tv, w \rangle = \langle v, T^*w \rangle.$$

Proof. From Theorem 3.40 and boundedness of T, we get $|\langle Tv, w \rangle| \leq ||T|| ||v|| ||w||$. So $\phi_w(v) = \langle Tv, w \rangle$ is bounded. By Theorem 3.49, we have unique $u \in H$ such that $\langle Tv, w \rangle = \phi_w(v) = \langle v, u \rangle$. The define the mapping T^* by $T^*(w) = u$. The mapping T^* defined in such a way is linear and $||T^*|| \leq ||T||$ since

$$||T^*w|| = \sup_{v \in H^1} |\langle v, T^*w \rangle| = \sup_{v \in H^1} |\langle Tv, w \rangle| \le ||T|| ||w||.$$

It is easy to check that $T^{**} = T$ and $||T^*T|| = ||T||^2$. We get the following Corollary 3.51. $\mathcal{B}(H) = \{T \in \mathcal{L}(H) : ||T|| < \infty\}$ is a C*-algebra.

4 The spectrum

4.1 Unital algebras

Definition 4.1. The *spectrum* of an element b of a unital algebra A is given by

 $\sigma(b) = \{ \lambda \in \mathbb{C} : \lambda \mathbf{1} - b \text{ is not invertible} \}.$

Example 4.2. • If $A = \mathbb{C}^X$ with pointwise operations, then for any $f \in A$,

$$\sigma(f) = \operatorname{ran}(f) = \{f(x) : x \in X\}.$$

To see this, let $f(x) = \lambda$. Then for all $g \in A$,

$$((\lambda \mathbf{1} - f)g)(x) = (\lambda - f(x))g(x) = 0.$$

Thus $(\lambda \mathbf{1} - f)g \neq \mathbf{1}$ so $\lambda \mathbf{1} - f$ is not invertible, i.e., $\lambda \in \sigma(f)$. Conversely, if $\lambda \notin \operatorname{ran}(f)$, then for all $x \in X$, we can define

$$g(x) = \frac{1}{\lambda - f(x)}$$

Since $(\lambda \mathbf{1} - f)g = \mathbf{1}$, g is the inverse of $(\lambda \mathbf{1} - f)$, i.e., $\lambda \notin \sigma(f)$.

• For general algebras, we can think of $\sigma(a)$ as an "abstract range".

Definition 4.3. If V is a vector space, the *point-spectrum* of any $T \in \mathcal{L}(V)$ is given by

$$\sigma_p(T) = \{\lambda \in \mathbb{C} : \operatorname{Ker}(\lambda \mathbf{1} - T) \neq \{0\}\}.$$

So, $\lambda \in \sigma_p(T)$ means that there is a non-zero $w \in \text{Ker}(\lambda \mathbf{1} - T)$, i.e., $T(w) = \lambda w$. In other words, w is an *eigenvector* of T with *eigenvalue* λ . Then $(S(\lambda \mathbf{1} - T))(w) = 0$, for all $S \in \mathcal{L}(V)$, so

 $\sigma_p(T) = \{\lambda \in \mathbb{C} : \lambda \text{ is an eigenvalue of } T\} \subseteq \sigma(T).$

Observation 4.4. $\sigma_p(T) = \sigma(T)$, for all $T \in \mathcal{L}(V)$, if and only if dim $(V) < \infty$.

Definition 4.5. The spectral radius of an element b of a unital algebra A is given by

$$|b|_{\sigma} = \sup\{|\lambda| : \lambda \in \sigma(b)\}.$$

Example 4.6. • If $f \in A = \mathbb{C}^X$, then $|f|_{\sigma} = \sup_{x \in X} |f(x)| = ||f||$.

• If $T \in \mathcal{L}(V)$, where dim $(V) < \infty$, then

$$|T|_{\sigma} = \max\{|\lambda| : Tw = \lambda w\}.$$

• If

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

then $|T|_{\sigma} = 0 < 1 = ||T||.$

• If $Tw = \lambda w$, for $w \neq 0$, then for any $n \in \mathbb{N}$, $|\lambda| \leq ||T^n||^{\frac{1}{n}}$ since

 $|\lambda|^n ||w|| = ||\lambda^n w|| = ||T^n w|| \le ||T^n|| ||w||.$

Thus, if $\dim(V) < \infty$, then

$$|T|_{\sigma} \le \inf_{n \in \mathbb{N}} \|T^n\|^{\frac{1}{n}}.$$

Proposition 4.7. For any b in a normed algebra A (or even a "normed semigroup")

$$\|b^n\|^{\frac{1}{n}} \to \inf_{n \in \mathbb{N}} \|b^n\|^{\frac{1}{n}} \quad as \quad n \to \infty.$$

Proof. Given $m \in \mathbb{N}$, write $n = d_m m + r_m$, for $0 \le r_m < m$. So,

$$\|b^{n}\|^{\frac{1}{n}} \leq \left\| (b^{m})^{d_{m}} b^{r_{m}} \right\|^{\frac{1}{n}} \leq \|b^{m}\|^{\frac{d_{m}}{n}} \|b\|^{\frac{r_{m}}{n}} = \left(\|b^{m}\|^{\frac{1}{m}}\right)^{\frac{d_{m}m}{n}} \|b\|^{\frac{r_{m}}{n}}.$$

As $n \to \infty$,

$$\frac{d_m m}{n} = \frac{n - r_m}{n} < \frac{n - m}{n} \to 1 \quad \text{and} \quad \frac{r_m}{n} < \frac{m}{n} \to 0.$$

Thus,

$$\left(\|b^m\|^{\frac{1}{m}}\right)^{\frac{d_mm}{n}}\|b\|^{\frac{r_m}{n}} \to \|b^m\|^{\frac{1}{m}}.$$

So for any $\varepsilon > 0$, we eventually have

$$\|b^n\|^{\frac{1}{n}} \le \|b^m\|^{\frac{1}{m}} + \varepsilon.$$

Since m was arbitrary, this shows that the infimum is a limit.

4.2 General spectrum

To extend σ to non-unital algebra A, we consider \odot on A given by

$$a \odot b = a + b - ab$$

Observation 4.8. The operation \odot is associative with identity **0**: (A, \odot) is a monoid.

If A is unital, then $1 - a \odot b = 1 - a - b + ab = (1 - a)(1 - b)$. So,

 $a\mapsto \mathbf{1}-a$

is a semigroup isomorphism $(A, \odot) \to (A, \cdot)$. So $\mathbf{1} - b$ is invertible in (A, \cdot) if and only if b is invertible in (A, \odot) . When $\lambda \neq 0$, $\lambda \mathbf{1} - b = \lambda^{-1} (\mathbf{1} - \lambda^{-1} b)$, so this means

$$\sigma(b) \setminus \{0\} = \{\lambda : \lambda^{-1}b \text{ is not } \odot\text{-invertible}\}.$$

This makes sense even for non-unital A.

Definition 4.9. The non-zero spectrum of an element b of any algebra A is given by

$$\sigma(b) \setminus \{0\} = \{\lambda : \lambda^{-1}b \text{ is not } \odot\text{-invertible}\}.$$

We declare $0 \in \sigma(b)$ if and only if b is invertibles with respect to the usual product \cdot . In particular, if A is not unital, then $0 \in \sigma(b)$, for all $b \in A$.

Example 4.10. If $A = c_0(\mathbb{N}) = \{ f \in \mathbb{C}^{\mathbb{N}} : f(n) \to 0 \}$, with pointwise operations, then

$$\sigma(f) \setminus \{0\} = \operatorname{ran}(f) \setminus \{0\}.$$

To see this, let $f(x) = \lambda \neq 0$. Then for all $g \in A$,

$$(\lambda^{-1}f \odot g)(x) = \lambda^{-1}f(x) + g(x) - \lambda^{-1}f(x)g(x) = 1 + g(x) - g(x) = 1.$$

Thus, $(\lambda^{-1}f \odot g)(x) \neq \mathbf{0}$ so $\lambda^{-1}f$ is not \odot -invertible, i.e., $\lambda \in \sigma(f)$. Conversely if $\lambda \notin \operatorname{ran}(f)$, then $\lambda^{-1}f$ has an \odot -inverse g defined by

$$g(x) = \frac{f(x)}{f(x) - \lambda}.$$

We will denote the \odot inverse of b by b° .

Theorem 4.11. In any algebra A, if $s = -\sum_{n=1}^{\infty} (b^{\circ} \odot a)^n$ is defined, then

$$a \odot s = b$$

Proof. Note that

 $s = -b^{\circ} \odot a + (b^{\circ} \odot a)s$

and

$$b = a - b^{\circ} \odot a + b(b^{\circ} \odot a).$$

So,

$$\begin{aligned} a \odot s &= a + s - as \\ &= a + s + (b - a)s - bs \\ &= a - b^{\circ} \odot a + (b^{\circ} \odot a)s + (b - a)s + b(b^{\circ} \odot a) - b(b^{\circ} \odot a)s \\ &= a - b^{\circ} \odot a + b(b^{\circ} \odot a) + (b^{\circ} \odot a + b - a - b(b^{\circ} \odot a))s \\ &= a - b^{\circ} \odot a + b(b^{\circ} \odot a) + (b - a + b^{\circ} \odot a - b(b^{\circ} \odot a)) \\ &= b. \end{aligned}$$

Corollary 4.12. If A is a Banach algebra then, for any $b \in A$,

$$\inf_{n \in \mathbb{N}} \|b^n\|^{\frac{1}{n}} < 1 \implies b \text{ is } \odot\text{-invertible.}$$

Proof. Take γ with $\inf_{b \in \mathbb{N}} \|b^n\|^{\frac{1}{n}} < \gamma < 1$. Since "inf = lim" here, for large j, we have

$$\left\|\sum_{n=j}^{k} b^{n}\right\| \leq \sum_{n=j}^{k} \|b^{n}\| \leq \sum_{n=j}^{k} \gamma^{n} \leq \frac{\gamma^{j}}{1-\gamma} \to 0 \quad \text{as} \quad j \to \infty.$$

So, since A is complete, $s = -\sum_{n=1}^{\infty} b^n = -\sum_{n=1}^{\infty} (0^\circ \odot b)^n$ is defined. By Theorem 4.11, $b \odot s = 0$. Likewise $s \odot b = 0$, so $s = b^\circ$.

_			
г		٦	
L		1	
L			

Corollary 4.13. If A is a Banach algebra, then, for any $b \in A$,

$$|b|_{\sigma} \leq \inf_{n \in \mathbb{N}} \|b^n\|^{\frac{1}{n}}$$

Proof. For any $\lambda > \inf_n \|b^n\|^{\frac{1}{n}}$,

$$\inf_{n} \left\| (\lambda^{-1}b)^{n} \right\|^{\frac{1}{n}} = \inf_{n} \left\| \lambda^{-n}b^{n} \right\|^{\frac{1}{n}} = \inf_{n} |\lambda|^{-1} \|b^{n}\|^{\frac{1}{n}} < 1.$$

Thus $\lambda^{-1}b$ has a \odot -inverse by Corollary 4.12. So $\lambda \notin \sigma(b)$, by the definition of spectrum. **Corollary 4.14.** In any normed algebra $A, b \mapsto b^{\circ}$ is continuous whenever it is defined. *Proof.* By taking the completion, we may assume A is a Banach algebra. If ||b|| < 1, then

$$\|b^{\circ}\| = \left\|-\sum_{n=1}^{\infty} b^{n}\right\| \le \sum_{n=1}^{\infty} \|b\|^{n} \le \frac{\|b\|}{1-\|b\|}$$

Thus, if $||b|| \to 0$, then also $||b^{\circ}|| \to 0$, i.e., $b \mapsto b^{\circ}$ is continuous at **0**.

Now, fix \odot -invertible $b \in A$. If $a \to b$, then $b^{\circ} \odot a \to b^{\circ} \odot b \to \mathbf{0}$. So,

$$s_a = -\sum_{n=1}^{\infty} (b^\circ \odot a)^n \to \mathbf{0}$$

From $a \odot s_a = b$, we get $a^\circ = s_a \odot b^\circ \to b^\circ$, as $a \to b$. Thus, $a \mapsto a^\circ$ is also continuous at b. \Box Lemma 4.15. If $b \in A$, for a Banach algebra A, then $\sigma(b)$ is compact.

Theorem 4.16. If A is a (complex) normed algebra, then, for any $b \in A$,

$$|b|_{\sigma} \ge \inf_{n \in \mathbb{N}} \|b^n\|^{\frac{1}{n}}.$$

Proof. For contradiction, assume that $|b|_{\sigma} < \inf_n \|b^n\|^{\frac{1}{n}} = r$. Then the \odot -inverse $(\lambda^{-1}b)^{\circ}$ is defined whenever $|\lambda| \ge r$. So, $\lambda \mapsto (\lambda^{-1}b)^{\circ}$ is uniformly continuous on

$$\{\lambda \in \mathbb{C} : r \le |\lambda| \le r+1\}.$$

Take any such λ .

Let $\alpha^1, \ldots, \alpha^n$ be the n^{th} roots of 1 in \mathbb{C} . Let $\lambda_k = \alpha^k \lambda$, for $1 \leq k \leq n$. By the factor theorem,

$$1 - (\lambda^{-1}x)^n = \prod_{k=1}^n (1 - \lambda_k^{-1}x)$$

In the polynomial algebra $\mathbb{C}[x]$, this is equivalent to

$$(\lambda^{-1}x)^n = \lambda_1^{-1}x \odot \lambda_2^{-1}x \odot \cdots \odot \lambda_n^{-1}x.$$

Substituting b for x, we get the following equation in the algebra A:

$$(\lambda^{-1}b)^n = \lambda_1^{-1}b \odot \lambda_2^{-1}b \odot \cdots \odot \lambda_n^{-1}b.$$

Since each $\lambda_k^{-1} b$ is \odot -invertible, so is $(\lambda^{-1}b)^n$. Let

$$c_k = -\sum_{j=1}^{n-1} \lambda_k^{-j} b^{-j} = -\lambda_k^{-1} b - \lambda_k^{-2} b^2 - \dots - \lambda_k^{1-n} b^{1-n}.$$

Then

$$(\lambda^{-1}b)^n = \lambda_k^{-1}b \odot c_k,$$

 $\mathrm{so},$

$$(\lambda_k^{-1}b)^{\circ} = c_k \odot ((\lambda^{-1}b)^n)^{\circ}.$$

If $\alpha^n = 1$, then

$$\sum_{k=1}^{n} \alpha^{k} = \frac{\alpha - \alpha^{n+1}}{1 - \alpha} = \frac{\alpha - \alpha}{1 - \alpha} = 0, \text{ so } \sum_{k=1}^{n} c_{k} = 0.$$

Thus,

$$\sum_{k=1}^{n} (\lambda_k^{-1} b)^{\circ} = \sum_{k=1}^{n} (c_k \odot ((\lambda^{-1} b)^n)^{\circ}) = n((\lambda^{-1} b)^n)^{\circ}$$

 \mathbf{SO}

$$((\lambda^{-1}b)^n)^\circ = \frac{1}{n} \sum_{k=1}^n (\lambda_k^{-1}b)^\circ.$$

Now,

$$\left\| ((\lambda^{-1}b)^n)^{\circ} - ((r^{-1}b)^n)^{\circ} \right\| \le \frac{1}{n} \sum_{k=1}^n \left\| (\lambda_k^{-1}b)^{\circ} - (r_k^{-1}b)^{\circ} \right\|.$$

By uniform continuity, for any $\varepsilon > 0$, we can pick $\lambda > r$ with

$$\left\| ((\alpha \lambda)^{-1} b)^{\circ} - (\alpha r^{-1} b)^{\circ} \right\| \le \varepsilon, \text{ for all } \alpha \text{ with } |\alpha| = 1.$$

Then

$$\left\| ((\lambda^{-1}b)^n)^{\circ} - ((r^{-1}b)^n)^{\circ} \right\| \le \varepsilon.$$

But,

$$\|(\lambda^{-1}b)^n\| \le (|\lambda^{-1}|\|b^n\|^{\frac{1}{n}})^n \to (\lambda^{-1}r)^n \to 0, \text{ so } ((\lambda^{-1}b)^n)^\circ \to \mathbf{0}.$$

Thus,

$$\|((r^{-1}b)^n)^\circ\| \to 0$$
, so $(r^{-1}b)^n \to \mathbf{0}$.

But this contraticts

$$\left\| (r^{-1}b)^n \right\| = r^{-n} \|b^n\| \ge \|b^n\|^{-1} \|b^n\| = 1.$$

Corollary 4.17. If A is a Banach algebra, then for any $b \in A$,

$$|b|_{\sigma} = \inf_{n} \|b^n\|^{\frac{1}{n}}.$$

Note that $|b|_{\sigma}$ only depends on the algebra structure of A and $\inf_n \|b^n\|^{\frac{1}{n}}$ only depends on the norm and product structure.

Corollary 4.18. If A is a C*-algebra, then for any self-adjoint $b \in A$,

$$|b|_{\sigma} = ||b||.$$

Proof. If $b = b^*$, then $||b^2|| = ||b^*b|| = ||b||^2$. By induction, $||b^{2^n}|| = ||b||^{2^n}$. Thus,

$$||b|| = ||b^{2^n}||^{\frac{1}{2^n}} \to |b|_{\sigma}$$

by Corollary 4.17.

Corollary 4.19. If A and B are C*-algebras and $\pi: A \to B$ is a *-algebra homomorphism, then

 $\|\pi\| \le 1.$

Proof. If $\lambda^{-1}a$ is \odot -invertible, then so is $\pi(\lambda^{-1}a) = \lambda^{-1}\pi(a)$. Thus, $\sigma(\pi(a)) \subseteq \sigma(a)$ and hence $|\pi(a)|_{\sigma} \leq |a|_{\sigma}$. If a is self-adjoint, then so is $\pi(a)$ and hence $||\pi(a)|| \leq ||a||$, by Corollary 4.18. For general $a \in A$, $||\pi(a)|| = \sqrt{||\pi(a^*a)||} \leq \sqrt{||a^*a||} = ||a||$.

Corollary 4.20. C*-algebra norms are unquie.

Proof. If $\|\cdot\|$ and $\|\cdot\|'$ are C*-algebra norms on a *-algebra A, taking π = id and applying Corollary 4.19, we get $\|a\| \le \|a\|' \le \|a\|$, for all $a \in A$.

5 Representations

Spectral theory will be applied to obtain representations. Recall that, for any set X, we have commutative C*-algebra

$$\ell^{\infty}(X) = \left\{ f \in \mathbb{C}^X : \|f\| < \infty \right\},\$$

where $||f|| = \sup_{x \in X} |f(x)|$. $\ell^{\infty}(X)$ also has many C*-subalgebras, e.g., any topology on X determines C*-subalgebra of continuous bounded functions $C^b(X)$. Given $x \in X$, we have a further (potentially non-unital) C*-subalgebra

$$A = \Big\{ f \in C^{b}(X) : f(x) = 0 \Big\}.$$

It turns out that all commutative C*-algebras can be *represented* as C*-algebra of continuous bounded functions on a topological space, vanishing at a particular point in the non-unital case.

Basic idea. Given a C*-algebra A, we can consider *characters* on A:

 $\Phi_A = \{ \psi \in \mathbb{C}^A : \psi \text{ is a (*-)algebra homomorphism} \}.$

Every $b \in A$ determines a function $\hat{b} \colon \Phi_A \to \mathbb{C}$, defined by

$$\widehat{b}(\psi) = \psi(b).$$

Then $b \mapsto \hat{b}$ is a homomorphism $A \to \ell^{\infty}(\Phi_A)$:

- $\widehat{ab} = \widehat{ab}$ because $\widehat{ab}(\psi) = \psi(ab) = \psi(a)\psi(b) = \widehat{a}(\psi)\widehat{b}(\psi) = (\widehat{ab})(\psi)$.
- Similarly, $\widehat{a+b} = \widehat{a} + \widehat{b}$, $\widehat{b^*} = \widehat{b}^*$, and $\widehat{\lambda b} = \widehat{\lambda b}$.
- $\|\widehat{b}\| \le \widehat{b} \ (\le \infty)$ because $|\widehat{b}(\psi)| = |\psi(b)| \le \|\psi\| \|b\| \le \|b\|$.

However, $b \mapsto \hat{b}$ may not be an isomorphism. For example, if $A = M_2(\mathbb{C})$, then $\Phi_A = \{0\}$, so $\hat{b} = 0$, for all $b \in A$. The goal is to show that $\|\hat{b}\| = \|b\|$, for all $b \in A$, when A is commutative.

5.1 Gelfand representation

It will be convenient to add a unit to any non-unital algebra A. Algebraically this is simple: let $A' = A \times \mathbb{C}$ with

$$(a, \lambda)^* = (a^*, \overline{\lambda}),$$

$$\lambda(a, \gamma) = (\lambda a, \lambda \gamma),$$

$$(a, \lambda) + (b, \gamma) = (a + b, \lambda + \gamma),$$

$$(a, \lambda)(b, \gamma) = (ab + \gamma a + \lambda b, \lambda \gamma).$$

Then A' is a *-algebra with *-subalgebra $A \times \{0\}$ isomorphic to A. But, A' also has a unit (0, 1).

Defining a norm to make A' a C*-algebra is more tricky. One could define *-algebra norm by $||(a, \lambda)|| = ||a|| + |\lambda|$, but this norm might not satisfy the C*-condition, namely it might happen that $||(a, \lambda)^*(a, \lambda)|| \neq ||(a, \lambda)||^2$.

Theorem 5.1. A' is a C^* -algebra under the norm

$$||(a, \lambda)|| = \sup_{\|b\| \le 1} ||ab + \lambda b||.$$

Proof. Note that this is the operator norm, considering $(a, \lambda) \in \mathcal{B}(A)$, defined by

$$(a,\lambda)(b) = ab + \lambda b.$$

This makes sense also algebraically with how the operations on A were extended above and also ||(a,0)|| = ||a||. Thus, the norm is an algebra norm. Also, 1 dimensional extensions of Banach spaces are always complete. So we only need to check the C^{*} norm condition $||x||^2 \le ||x^*x||$.

For any $(a, \lambda) \in A'$,

$$\begin{split} \|(a,\lambda)\|^{2} &= \sup_{\|b\| \leq 1} \|(a,\lambda)(b)\|^{2} = \sup_{\|b\| \leq 1} \|ab + \lambda b\|^{2} \\ &= \sup_{\|b\| \leq 1} \|(b^{*}a^{*} + \overline{\lambda}b^{*})(ab + \lambda b)\| \\ &= \sup_{\|b\| \leq 1} \|b^{*}[(a^{*},\overline{\lambda}) \circ (a,\lambda)](b)\| \\ &= \sup_{\|b\| \leq 1} \|[(a^{*},\overline{\lambda}) \circ (a,\lambda)](b)\| \\ &= \|(a^{*},\overline{\lambda})(a,\lambda)\| \\ &= \|(a,\lambda)^{*}(a,\lambda)\| \end{split}$$

Thus, the C^* norm condition holds.

Proposition 5.2. Every character on a Banach algebra is automatically continuous.

Proof. Consider a character, i.e., an algebra homomorphism $\phi: A \to \mathbb{C}$. For any $a \in A$, $\{\phi(a)\} = \sigma(\phi(a)) \subseteq \sigma(a)$. Thus $|\phi(a)| \leq |a|_{\sigma} \leq ||a||$, i.e., $||\phi|| \leq 1$.

Proposition 5.3. If ϕ is a character on $A \subseteq A' = A + \mathbb{C}\mathbf{1}$, then

$$\phi'(a + \lambda \mathbf{1}) = \phi(a) + \lambda$$

defines a character ϕ' on A' extending ϕ on A.

Theorem 5.4. Characters take real values on self-adjoint elements of C*-algebras.

Proof. Let ϕ be a character on A. Extend ϕ to $A' = A + \mathbb{C}\mathbf{1}$. Given $a \in A$ and $t \in \mathbb{R}$, define

$$e^{ita} = \sum_{n=0}^{\infty} \frac{1}{n!} (ita)^n.$$

Thanks to completeness, this is always well-defined. If $a = a^*$, then

$$(e^{ita})^* = \sum_{n=0}^{\infty} \frac{1}{n!} (-ita)^n = e^{-ita}.$$

Thus,

$$|e^{ita}||^2 = ||(e^{ita})^* e^{ita}|| = ||e^{-ita}e^{ita}|| = ||e^{\mathbf{0}}|| = ||\mathbf{1}|| = 1.$$

So,

$$1 \ge \|\phi\| \ge |\phi(e^{ita})| = |e^{it\phi(a)}| = e^{-tr},$$

where $\phi(a) = s + ri$. If $r \neq 0$, then for large positive or negative t this would be impossible. Thus, $\phi(a) = s \in \mathbb{R}$.

Corollary 5.5. Characters on C*-algebras are automatically *-homomorphisms.

Proof. For any $a \in A$, $b = \frac{1}{2}(a^* + a)$ and $c = \frac{1}{2}i(a^* - a)$ are seff-adjoint. Moreover, $b + ic = \frac{1}{2}(a^* + a) - \frac{1}{2}(a^* - a) = a$. Using Theorem 5.4, if ϕ is a character, then

$$\phi(a^*) = \phi(b - ic) = \phi(b) - i\phi(c) = \overline{\phi(b) + i\phi(c)} = \overline{\phi(b + ic)} = \overline{\phi(a)}.$$

Definition 5.6. An *ideal* in an algebra is a subspace I such that, for all $b \in A$,

 $bI \cup Ib \subseteq I.$

Given an ideal I, we can form the quotient algebra A/I. The elements of A/I are subsets of the form b + I, for $b \in A$. We define (a + I)(b + I) = ab + I. This is well-defined since, for all $j, k \in I$,

(a+j)(b+k) + I = ab + ak + jb + jk + I = ab + I.

Likewise, define (a + i) + (b + I) = a + b + I and $\lambda(a + I) = \lambda a + I$. If A is a normed algebra and I is a closed ideal, then defining

$$||a + I|| = \inf_{j \in I} ||a + j||$$

turns A/I into a normed algebra as well.

Definition 5.7. An ideal I in an algebra A is modular if A/I is unital.

Proposition 5.8. If A is a commutative algebra, then any $e \in A$ defines a modular ideal

$$I_e = \{a - ae : a \in A\}.$$

Proof. For any $b \in I_e$ and $c \in A$, we have $a \in A$ with b = a - ae, so

$$bc = cb = c(a - ae) = (ca) + (ca)e \in I_e.$$

Likewise, we can verify I_e to be a subspace and hence an ideal. Moreover,

$$(e+I_e)(c+I_e) = ec + I_e = c - c + ec + I_e = c + I_e.$$

Thus, $e + I_e$ is a unit of A/I_e and hence I_e is modular.

Proposition 5.9. If I is an ideal and e + I is a unit of A/I, then

 $e \text{ is } \odot\text{-invertible} \implies e \in I \iff A = I.$

(The \implies can be reversed when $I = I_e$.)

Proof. Note that $I_e \subseteq I$ since

$$(ae + I) = (a + I)(e + I) = (a + I)$$

so $a - ae \in I$.

Suppose that e has \odot -inverse e° , so $\mathbf{0} = e^{\circ} \odot e = e^{\circ} + e + e^{\circ}e$. Thus, $e = e^{\circ}e - e^{\circ} \in I_e \subseteq I$, proving the first \Rightarrow .

Now, $e \in I$ implies $ae \in I$, for any $a \in A$. Then $a = a - ae + ae \in I_e + I \subseteq I$, proving the second \Rightarrow .

Conversely, if A = I, then, in particular, $e \in I$, giving the last \Leftarrow .

Proposition 5.10. Every proper modular ideal has maximal extension.

Proof. Suppose that I is a proper ideal and e + I is a unit of A/I, for some $e \in A$. Thus $e \notin I$, by the previous result. By Kuratowski-Zorn, we have a maximal ideal $J \supseteq I$ with $e \notin J$. So any ideal extension K of J would contain e. As $ae - a \in I \subseteq J \subseteq K$, e + K would again be a unit of A/K:

$$(e+K)(a+K) = ae + K = a - a + ae + K = a + K.$$

The previous result would imply K = A. This show that J is a maximal proper ideal. Why cant we apply Kuratowski-Zorn directly to proper ideals?

Proposition 5.11. If A is a normed algebra, I is a proper ideal and e + I is a unit of A/I, then

$$\inf_{j \in I} \|e - j\| \ge 1.$$

Proof. Say we had $j \in I$ with ||e-j|| < 1. Then e-j is \odot -invertible, so we can define $f = (e-j)^{\circ}$. This means that

$$0 = f \odot (e - j) = f + e - j - fe + fj = 0$$
, so $e = j - f + fe - fj \in I + I_e - I \subseteq I$.

But then A = I, contradicting properness.

Corollary 5.12. Every maximal modular ideal in a normed algebra is closed.

Corollary 5.13. If A is commutative normed algebra and I is a maximal modular ideal, then

$$A/I \cong \mathbb{C}.$$

Proof. Since I is closed, B = A/I is a commutative normed algebra with unit e. B has no non-zero proper ideals: if J were a non-zero proper ideal of B, $\bigcup J$ would be an ideal of A with $I \subsetneq \bigcup J \neq A$, a contradiction. Thus, for all $c \in B \setminus \{\mathbf{0}\}$, Bc = B, i.e., c is invertible. Since $\sigma(c) \neq \emptyset$, we have $\lambda \in \mathbb{C}$ with $\lambda e - c$ not invertible, so $c = \lambda e$. This show that $B \cong \mathbb{C}e \cong \mathbb{C}$. \Box

Corollary 5.14. Maximal modular ideals in a commutative normed algebra A are precisely the kernels $\text{Ker}(\psi) = \{a \in A : \psi(a) = 0\}$ of non-zero characters $\psi \in \Phi_A$.

Theorem 5.15 (Gelfand isomorphism). If A is a commutative C^* -algebra, then

$$\|\hat{a}\| = \|a\|$$

for all $a \in A$.

Proof. We already saw that $\|\hat{a}\| \leq \|a\|$. Conversely, first, take a self-adjoint $a \in A$. Then $\|a\| = |a|_{\sigma}$ by Corollary 4.18. So, we have $\lambda \in \sigma(a)$ with $|\lambda| = \|a\|$. Thus, $\lambda^{-1}a$ is not \odot -invertible. By Proposition 5.8, $I_{\lambda^{-1}a}$ is a modular ideal. By Proposition 5.9, $I_{\lambda^{-1}a}$ is a proper modular ideal. By Proposition 5.10, we can extend $I_{\lambda^{-1}a}$ to a maximal modular ideal M which is by Corollary 5.14 the kernel of a non-zero character $\psi \in \Phi_A$. Since $\lambda^{-1}a + M$ is a unit for A/M, $\psi(\lambda^{-1}a) = 1$. Thus $\hat{a}(\psi) = \psi(a) = \lambda$ and hence $\|\hat{a}\| \geq |\lambda| = \|a\|$.

For general $a \in A$, we have

$$||a||^{2} = ||a^{*}a|| = ||\widehat{a^{*}a}|| = ||\widehat{a}^{*}\widehat{a}|| = ||\widehat{a}||^{2}.$$

So, we can identify A with $\{\hat{a} : a \in A\} \subseteq \ell^{\infty}(\Phi_A)$. The next goal is to turn Φ_A into a compact topological space so that A can be identified precisely with the continuous functions from $\Phi_A \to \mathbb{C}$.

Definition 5.16. A topology $\mathcal{O}(X)$ on a set X is a family of open subsets of X such that

$$\emptyset \in \mathcal{O}(X), \quad X \in \mathcal{O}(X)$$
$$O, N \in \mathcal{O}(X) \implies O \cap N \in \mathcal{O}(X),$$
$$(O_{\lambda})_{\lambda \in \Lambda} \subseteq \mathcal{O}(X) \implies \bigcup_{\lambda} O_{\lambda} \in \mathcal{O}(X).$$

We call $\mathcal{B} \subseteq \mathcal{O}(X)$ a *basis* if every open \mathcal{O} is a union from \mathcal{B} , i.e.,

$$\mathcal{O}(X) = \left\{ \bigcup_{\lambda} B_{\lambda} : (B_{\lambda})_{\lambda \in \Lambda} \subseteq \mathcal{B} \right\}.$$

We call $\mathcal{S} \subseteq \mathcal{O}(X)$ a *subbasis* if the finite intersections from \mathcal{S}

$$\left\{ \bigcap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S} \text{ is finite} \right\}$$

form a basis.

Example 5.17. Every metric defines a canonical topology. Specifically, if d is a metric on X, we define $O \subseteq X$ to be open if for every $x \in O$ there is $\varepsilon > 0$ such that for every $y \in X$, $d(x, y) < \varepsilon$ implies that $y \in O$. This topology has basis \mathcal{B} of balls $B_x^{\varepsilon} = \{y \in X : d(x, y) < \varepsilon\}$, for $x \in X$ and $\varepsilon > 0$.

For example, if d is the usual metric on \mathbb{R} , given by d(x, y) = |x - y|, then

$$\mathcal{O}(X) = \left\{ \bigcup_{n \in \mathbb{N}} (a_n, b_n) : (a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \right\}.$$

The ball basis is $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$. A subbasis is $\mathcal{S} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{(-\infty, b) : b \in \mathbb{R}\}$.

Definition 5.18. A map $f: X \to Y$ between topological spaces is *continuous* if

$$N \in \mathcal{O}(Y) \implies f^{-1}(N) \in \mathcal{O}(X)$$

This agrees with the metric notion of continuity. Also, it suffices to consider N is a basis or a subbasis. A composition of continuous maps is also continuous.

Definition 5.19. A topological space X is *compact* if every open cover has a finite subcover. In other words, for any open family $(O_{\lambda})_{\lambda \in \Lambda} \subseteq \mathcal{O}(X)$,

$$X = \bigcup_{\lambda \in \Lambda} O_{\lambda} \implies \exists \text{ finite } F \subseteq \Lambda \text{ such that } X = \bigcup_{\lambda \in F} O_{\lambda}.$$

Lemma 5.20. Continuous image of a compact space X is compact and any closed subset $C \subseteq X$, that is $X \setminus C$ is open, is also compact.

Lemma 5.21. For compactness, it suffices to consider covers from a basis \mathcal{B}

Proof. We prove it for basis \mathcal{B} . Given an open cover $\mathcal{C} \subseteq \mathcal{O}(X)$, let $\mathcal{C}' = \{B \in \mathcal{B} : B \subseteq O \in \mathcal{C}\}$. Since \mathcal{B} is a basis, \mathcal{C}' still covers X. By assumption, we have B_1, \ldots, B_n covering X. Thus, we have $O_1 \supseteq B_1, \ldots, O_n \supseteq B_n$ from \mathcal{C} covering X.

Theorem 5.22 (Alexander subbasis theorem). If every cover from a subbasis S has a finite subcover, then X is compact.

Proof. Suppose that $\mathcal{C} \subseteq \mathcal{O}(X)$ covers X but has no finite subcover. By Kuratowski-Zorn, we can take maximal \mathcal{C} with this property. By assumption $\mathcal{C} \cap \mathcal{S}$ can not cover X. Take $x \in X \setminus \bigcup (\mathcal{C} \cap \mathcal{S})$ and $O \in \mathcal{C}$ with $x \in O$. Since \mathcal{S} is subbasis, we have finite $\mathcal{F} \subseteq \mathcal{S}$ with $x \in \bigcap \mathcal{F} \subseteq O$. By the choice of x, it must be that $\mathcal{F} \cap \mathcal{C} = \emptyset$. By the maximality, for $S \in \mathcal{F}$, we have finite $\mathcal{G}_S \subseteq \mathcal{C}$ with $X = S \cup \bigcup \mathcal{G}_S$. Thus,

$$X = \bigcap \mathcal{F} \cup \bigcup \mathcal{G} = O \cup \bigcup \mathcal{G}, \quad \text{where} \quad \mathcal{G} = \bigcup_{S \in \mathcal{F}} \mathcal{G}_S.$$

So $\{O\} \cup \mathcal{G}$ is a finite cover of X from \mathcal{C} , a contradiction.

Definition 5.23. A subspace is a subset Y of a space X with the subspace topology

$$\mathcal{O}(Y) = \{ N \cap Y : N \in \mathcal{O}(X) \}.$$

Example 5.24. The unit interval [0, 1], as a subspace of \mathbb{R} , has the subbasis

$$\mathcal{S} = \{ \emptyset, [0,1] \} \cup \{ (a,1] : 0 < a < 1 \} \cup \{ [0,b) : 0 < b < 1 \}$$

Theorem 5.25. The unit interval [0,1] is a compact topological space.

Proof. By Theorem 5.22, it suffices to consider the subbases. For contradiction, suppose that $C \subseteq S$ has no finite subcover. We need to show that C is not a cover.

- If $\mathcal{C} \subseteq \{(a, 1] : 0 < a < 1\}$, then $0 \notin \bigcup \mathcal{C}$, so $X \neq \bigcup \mathcal{C}$.
- If $\mathcal{C} \subseteq \{[0, b) : 0 < b < 1\}$, then $1 \notin \bigcup \mathcal{C}$, so $X \neq \bigcup \mathcal{C}$.

Otherwise,

$$b' = \sup\{b : [0, b) \in \mathcal{C}\} \le \inf\{a : (a, 1] \in \mathcal{C}\} = a'.$$

Then $x \notin \bigcup \mathcal{C}$, for any x with $b' \leq x \leq a'$, so again $X \neq \bigcup \mathcal{C}$.

Given topological spaces $(X_{\lambda})_{\lambda \in \Lambda}$, consider their product

$$Y = \prod_{\lambda \in \Lambda} X_{\lambda} = \{ (y_{\lambda})_{\lambda \in \Lambda} : \forall \lambda \in \Lambda \ (y_{\lambda} \in X_{\lambda}) \}.$$

For each $\gamma \in \Lambda$, we have a projection $p_{\gamma} \colon Y \to X_{\gamma}$ onto the coordinate γ :

$$p_{\gamma}((y_{\lambda})_{\lambda \in \Lambda}) = y_{\gamma}.$$

We take the cylinder sets

$$p_{\gamma}^{-1}(O) = \{(y_{\gamma}) \in Y : y_{\gamma} \in O\},\$$

for $\gamma \in \Lambda$ and $O \in \mathcal{O}(X_{\gamma})$, as a subbasis for a topology on Y. So, $O \in \mathcal{O}(Y)$ if and only if O is a union of finite cylinder intersections

$$p_{\gamma_1}^{-1}(O_1) \cap \cdots \cap p_{\gamma_n}^{-1}(O_n).$$

This is the coarsest topology making all the projections continuous.

Theorem 5.26 (Tikhonov's theorem). If $(X_{\lambda})_{\lambda \in \Lambda}$ are all compact spaces, then $Y = \prod_{\lambda \in \Lambda} X_{\lambda}$ is also compact.

Proof. By Theorem 5.22, we only need to consider cylinder sets $p_{\lambda}^{-1}(O)$. Let \mathcal{C} be a collection of cylinder sets with no finite subcollection covering Y. We need to show the entirety of \mathcal{C} does not cover Y. For each $\lambda \in \Lambda$, let $\mathcal{C}_{\lambda} = \{O \in \mathcal{O}(X_{\lambda}) : p_{\lambda}^{-1}(O) \in \mathcal{C}\}$. Not that \mathcal{C}_{λ} does not cover X_{λ} – otherwise it would have a finite subcover and the corresponding cylinder sets would cover Y. So, we may pick $y_{\lambda} \in X_{\lambda} \setminus \bigcup \mathcal{C}_{\lambda}$, for each $\lambda \in \Lambda$. This gives us $(y_{\lambda})_{\lambda \in \Lambda} \in Y$ not covered by any \mathcal{C}_{λ} . Thus $\mathcal{C} = \bigcup_{\lambda \in \Lambda} \mathcal{C}_{\lambda}$ is not a cover of Y.

Proposition 5.27. Every normed algebra A has compact character space Φ_A .

Proof. Due to linearity, each character $\psi \in \Phi_A$ on a normed algebra A is determined by its values on the unit ball $A^1 = \{a \in A : ||a|| \le 1\}$. Also, $||\psi|| \le 1$, so $\psi \in \Phi_A$ maps A^1 to \mathbb{C}^1 . Since \mathbb{C}^1 is compact, so is $Y = \prod_{a \in A^1} \mathbb{C}^1$, by Theorem 5.26. Now, Φ_A is the intersection of the following, for $a, b \in A$ and $t \in (0, 1)$:

$$C_{t,a,b} = \{ \psi \in Y : \psi(ta + (1-t)b) - t\psi(a) - (1-t)\psi(b) = 0 \},\$$

$$M_{a,b} = \{ \psi \in Y : \psi(ab) - \psi(a) - \psi(b) = 0 \}.$$

Each set here is closed, hence their intersection Φ_A is also closed. Since Φ_A is a closed subset of compact Y, Φ_A is also compact.

Note that $\hat{a}(\psi) = \psi(a)$ is just the projection of ψ onto "coordinate *a*". Thus, Gelfand transfrom $\hat{a}: \Phi_A \to \mathbb{C}$ of *a* is continuous on Φ_A . So, we can identify any commutative C^{*}algebra *A* with the C^{*}-subalgebra $\{\hat{a}: a \in A\}$ of continuous functions from $\Phi_A \to \mathbb{C}$. Does this C^{*}-subalgebra contain all continuous functions $C(\Phi_A)$? Not quite – the zero homomorphism $0 \in \Phi_A$ always gets mapped to 0 by any Gelfand transform \hat{a} . But this is really the only restriction. We show this by approximating any $f \in C(\Phi_A)$ with f(0) = 0 by $(\hat{a_n})$. By completeness, we have $a_n \to a \in A$ and hence $f = \hat{a}$.

First, we show that f can at least be approximated on pairs of points. This will rely on the following result, showing that characters are determined already by their scalar multiples.

Proposition 5.28. If $\phi, \psi \in \Phi_A \setminus \{0\}$ and $\phi = \lambda \psi$, for some $\lambda \in \mathbb{C}$, then $\phi = \psi$.

Proof. Since $\psi \neq 0$, we have $a \in A$ with $\psi(a) \neq 0$. Note $\lambda^2 \psi(a)^2 = \phi(a)^2 = \phi(a^2) = \lambda \psi(a^2) = \lambda \psi(a)^2$. Since $\psi(a) \neq 0$, this gives $\lambda^2 = \lambda$ and hence $\lambda = 0$ or $\lambda = 1$. Since $\phi \neq 0$, we must have $\lambda = 1$, so $\phi = \psi$.

Proposition 5.29. For distinct $\phi, \psi \in \Phi_A \setminus \{0\}$ we have $a \in A$ with $\phi(a) = 1$ and $\psi(a) = 0$.

Proof. Take $b \in A$ with $\phi(b) \neq 0$. By Proposition 5.28,

$$\psi \neq \frac{\psi(b)}{\phi(b)}\phi.$$

So we have $c \in A$ with

$$\phi(b)\psi(c) \neq \psi(b)\phi(c).$$

Thus,

$$\phi(\psi(c)b - \psi(b)c) = \phi(b)\psi(c) - \psi(b)\phi(c) \neq 0$$

and

$$\psi(\psi(c)b - \psi(b)c) = \psi(b)\psi(c) - \psi(b)\psi(c) = 0.$$

Taking

$$a = \frac{\psi(c)b - \psi(b)c}{\phi(b)\psi(c) - \psi(b)\phi(c)}$$

gives $\phi(a) = 1$ while $\psi(a) = 0$.

Corollary 5.30. For distinct $\phi, \psi \in \Phi_A \setminus \{0\}$ and $\alpha, \beta \in \mathbb{C}$, we have $a \in A$ with

$$\phi(a) = \alpha \quad and \quad \psi(a) = \beta.$$

The next step is to build up from points to the whole space using compactness. This is done via the Stone-Wierstrass theorem.

Theorem 5.31 (Stone-Weirstrass theorem). Suppose that $A \subseteq C(X, \mathbb{R})$ is closed under \lor and \land , defined by

$$(a \lor b)(x) = \max(a(x), b(x)),$$

$$(a \land b)(x) = \min(a(x), b(x)).$$

If X is compact and $f \in C(X, \mathbb{R})$, then

$$\forall y, z \in X \quad \inf_{a \in A} (|f(y) - a(y)| + |f(z) - a(z)|) = 0 \implies \inf_{a \in A} ||f - a|| = 0.$$

Proof. For every $\varepsilon > 0$ and $y, z \in X$, we have $a_{yz} \in A$ with

$$|f(y) - a_{yz}(y)| < \varepsilon$$
 and $|f(z) - a_{yz}(z)| < \varepsilon$.

In other words, both y and z are in the open subsets

$$U_{yz} = \{x \in X : f(x) - a_{yz}(x) < \varepsilon\},\$$

$$V_{yz} = \{x \in X : a_{yz}(x) - f(x) < \varepsilon\}.$$

For a fixed y, compactness gives finite $G \subseteq X$ with $X = \bigcup_{z \in G} U_{yz}$. Taking $a_y = \bigvee_{z \in G} a_{yz} \in A$ gives $f(x) - a_y(x) < \varepsilon$, for all $x \in X$. Also $a_y(x) - f(x) < \varepsilon$, for all $x \in V_y = \bigcap_{z \in G} V_{yz}$. Again compactness gives finite $F \subseteq X$ with $X = \bigcup_{y \in F} V_y$. Taking $a = \bigwedge_{y \in F} a_y \in A$ gives $a(x) - f(x) < \varepsilon$, for all $x \in X$. But still $f(x) - a(x) < \varepsilon$, for all $x \in X$, as this holds for each a_y . Thus, $||f - a|| < \varepsilon$. Since $\varepsilon > 0$ was arbitrary, $\inf_{a \in A} ||f - a|| = 0$.

Theorem 5.32. If $A \subseteq C(X, \mathbb{R})$ is a real Banach algebra, A is closed under \lor and \land .

Proof. We claim $\sqrt{a} \in A$, for any $a \in A_+ = C(X, \mathbb{R}_+)$. To see this, note that \sqrt{r} on \mathbb{R}_+ can be approximated uniformely by polynomials with zero constant term on [0, s], for any s > 0:

- There is an analytic branch of $\sqrt{\alpha + \beta i}$ defined on $\mathbb{C} \setminus (-\mathbb{R}_+)$.
- Thus, the power series centered at s converges uniformely on $[\delta, 2s \delta]$.
- So, we have a polynomial p with $|p(r) \sqrt{r}| < \varepsilon$, for $r \in [\delta, 2s \delta]$.
- Then $q(r) = p(r+\delta) p(\delta)$ is a polynomial with zero constant term such that $|q(r) \sqrt{r}| < \varepsilon'$, for all $r \in [0, 2s 2\delta] \supseteq [0, s]$.

Taking s = ||a||, $q(a) \in A$ and $||q(a) - \sqrt{a}|| < \varepsilon$. Since ε was arbitrary and A is complete and closed, $\sqrt{a} \in A$.

Thus, for all $a \in A$, $|a| = \sqrt{a^2} \in A$ and hence, for all $a, b \in A$,

$$a \lor b = \frac{1}{2}(a+b+|a-b|) \in A$$
 and $a \land b = \frac{1}{2}(a+b-|a-b|) \in A$.

Theorem 5.33. If A is a commutative C^* -algebra, then

$$\{\widehat{a}: a \in A\} = C_0(\Phi_A).$$

Proof. Note that $\{\hat{a} : a = a^*\} \subseteq C(\Phi_A, \mathbb{R})$ is a real Banach algebra. By Theorem 5.32, it is closed under \vee and \wedge . By Corollary 5.30, for any $f \in C(\Phi_A, \mathbb{R})$ and $\phi, \psi \in \Phi_A \setminus \{0\}$, we have $a \in A$ with $\hat{a}(\phi) = f(\phi)$ and $\hat{a}(\psi) = f(\psi)$. Since f is real, we can ensure that $a = a^*$. By Theorem 5.31, as long as f(0) = 0, we have $(a_n) \subseteq A$ with $a_n = a_n^*$ and $||\hat{a}_n - f|| \to 0$. By completeness, $a_n \to a$, so $f = \hat{a}$.

Since every $f \in C(\Phi_A)$ can be written as f = g + ih, for $g, h \in C(\Phi_A, \mathbb{R})$, it follows that $f = \hat{b} + i\hat{c} = \hat{a}$, for $a = b + ic \in A$.

Thus, all commutative C*-algebras are isomorphic to $C_0(X)$, for some compact space X and some fixed point $0 \in X$.

Proposition 5.34. If A is unital, then the zero character 0 is isolated (that is open) in Φ_A .

Proof. Note that $\psi(1) = 1$, for $\psi \in \Phi_A \setminus \{0\}$ while 0(1) = 0. Thus,

$$\{0\} = \widehat{1}^{-1} \left(\left\{ \lambda \in \mathbb{C} : |\lambda| < \frac{1}{2} \right\} \right)$$

is open.

This means that $\Phi_A \setminus \{0\}$ is also compact and A is isomorphic to $C(\Phi_A)$. In other words, all unital commutative C*-algebras are isomorphic to those of the form C(X), for some compact space X.

Even in non-commutative C*-algebras, the Gelfand representation gives a powerful "continuous functional calculus" on normal elements. First, ote that any $b \in A$ generates a C*-algebra B given by

$$B = cl(\{p(b) : p \text{ is a *-polynomial with no constant term}\}).$$

Equivalently, B is the smallest C*-subalgebra of A containing b. If b is normal, i.e., $b^*b = bb^*$, then p(b)q(b) = q(b)p(b), for all *-polynomials p and q, and hence B is commutative. Thus, by Gelfand, we can identify B with $C_0(\Phi_B)$. For any $f \in C_0(\mathbb{C})$, not that $f \circ \hat{b} \in C_0(\Phi_B)$. Thus, we have some $f(b) \in B$ with $\widehat{f(b)} = f \circ \hat{b}$, i.e., for all $\psi \in \Phi_B$,

$$\psi(f(b)) = f(\psi(b)).$$

In fact, we really only need f to be defined on $\sigma(b)$.

Recall the definition of the spectrum of an element b of an algebra A:

 $\sigma_A(b) \setminus \{0\} = \{\lambda \in \mathbb{C} \setminus \{0\} : k\lambda^{-1}b \text{ is not } \odot\text{-invertible in } A\}.$

The ambient algebra A is crucial. If b is in a subalgebra B of A and $\lambda^{-1}b$ has no \odot -inverse in A, then it centrainly can not have \odot -inverse in B either, so

$$\sigma_A(b) \setminus \{0\} \subseteq \sigma_B(b) \setminus \{0\}.$$

In general (even Banach) algebras, this inclusion can be strict. However, for C*-(sub)algebras, we always have equality. For simplicity, we restrict ourselves to normal elements.

Theorem 5.35. If B is a C*-subalgebra of A and $b \in B$ is normal, then

$$\sigma_A(b) \setminus \{0\} = \sigma_B(b) \setminus \{0\}.$$

Proof. Note it suffices to take B as the C*-subalgebra generated by B. Let $f_n \in [0,1]^{\mathbb{C}}$ be "bump functions" at 1 with bumps of radius 1/n:

$$f_n(\alpha) = 0 \lor (1 - n|1 - \alpha|).$$

Given $\lambda \in \sigma_B(b) \setminus \{0\}$, let $a_n = f_n(\lambda^{-1}b)$ so $||a_n|| = 1$ and

$$\left\|a_n - a_n \lambda^{-1} b\right\| \to 0.$$

Thus

$$a_n \odot \lambda^{-1} b = \lambda^{-1} b + a_n - a_n \lambda^{-1} b \to \lambda^{-1} b$$

If $\lambda^{-1}b$ had a \odot -inverse c in A, we would have a contradiction:

$$a_n = a_n \odot \lambda^{-1} b \odot c \to \lambda^{-1} b \odot c = 0.$$

Recall that for any function f in algebra $C_0(X)$,

$$\operatorname{ran}(f) = \sigma(f) \cup \{0\}.$$

Indeed, for $\lambda \notin \sigma(f) \cup \{0\}$, the \odot -inverse of $\lambda^{-1}f$ is given by

$$g(x) = \frac{f(x)}{f(x) - \lambda}.$$

If $b \in A$ is normal and $B \approx C_0(\Phi_B)$ is the C*-subalgebra it generates,

$$\operatorname{ran}(b) = \sigma_B(b) \cup \{0\} = \sigma_A(b) \cup \{0\},\$$

i.e., \hat{b} maps Φ_B onto the spectrum *b* of *A* plus 0. Thus, f(b) only depends on the values of *f* on $\sigma(b)$.

In particular, if $b \in A$ is normal and $\sigma(b) \subseteq \mathbb{R}_+$, then \sqrt{b} is defined. Moreover, $\sqrt{b} = \sqrt{b^*}$ and $b = \sqrt{b}\sqrt{b} = \sqrt{b^*}\sqrt{b^*}$, so

$$\sigma(b) \subseteq \mathbb{R}_+ \implies b \in A_+ = \{a^*a : a \in A\}.$$

The goal is to show that the converse also holds

Proposition 5.36. For normal $b \in A$,

$$\sigma(b) \subseteq \mathbb{R}_+ \iff \|\lambda \mathbf{1} - b\| \le \lambda,$$

for some/all $\lambda \geq \|b\|$.

Proof. Let $B \approx C(\Phi_B \setminus \{0\})$ be the C*-subalgebra of A' generated by b and 1. The ran $\widehat{\lambda \mathbf{l}} = \{\lambda\}$ and ran $\widehat{b} = \sigma(b)$ and hence

$$\|\lambda \mathbf{1} - b\| = \|\widehat{\lambda \mathbf{1}} - \widehat{b}\| = \lambda - \min(\sigma(b)).$$

Thus, $\|\lambda \mathbf{1} - b\| \leq \lambda$ if and only if $\min(\sigma(b)) \geq 0$ if and only if $\sigma(b) \subseteq \mathbb{B}_+$.

Corollary 5.37. For normal $a, b \in A$, if $\sigma(a), \sigma(b) \subseteq \mathbb{R}_+$, then $\sigma(a+b) \subseteq \mathbb{R}_+$.

Proof. Follows from the previous result since $||a + b|| \le ||a|| + ||b||$ and

$$|(||a|| + ||b||)\mathbf{1} - (a+b)|| \le |||a||\mathbf{1} - a|| + |||b||\mathbf{1} - b|| \le ||a|| + ||b||$$

Theorem 5.38. For any C*-algebra A, $A_+ = \{b \in A : b \text{ is normal and } \sigma(b) \subseteq \mathbb{R}_+\}.$

Proof. We already saw that $b \in A_+$ if b is normal and $\sigma(b) \subseteq \mathbb{R}_+$. Conversely, say $b \in A_+$, i.e., $b = a^*a$, for some $a \in A$. Then

$$b^* = (a^*a)^* = a^*a^{**} = a^*a = b$$

so b is normal and $\sigma(b) \subseteq \mathbb{R}$.

Let $b_+ = f_+(b)$ and $b_- = f_-(b)$, where $f_+, f_- \in \mathbb{R}^{\mathbb{R}}_+$ are defined by

$$f_{+}(r) = 0 \lor r$$
 and $f_{-}(r) = 0 \lor -r$.

Now,

$$(a\sqrt{b_{-}})^*a\sqrt{b_{-}} = \sqrt{b_{-}}a^*a\sqrt{b_{-}} = \sqrt{b_{-}}(b_{+} - b_{-})\sqrt{b_{-}} = -b_{-}^2.$$

Let $a\sqrt{b_-} = x + iy$ for self-adjoint $x, y \in A$. Then

$$a\sqrt{b_{-}}(a\sqrt{b_{-}})^{*} = 2(x^{2} + y^{2}) - (a\sqrt{b_{-}})^{*}a\sqrt{b_{-}}.$$

So by the previous result on sums, $\sigma(a\sqrt{b_-}(a\sqrt{b_-})^*)\subseteq \mathbb{R}_+$ and thus

$$\sigma(-b_{-}^2) = \sigma((a\sqrt{b_{-}})^*a\sqrt{b_{-}}) \subseteq \mathbb{R}_+ \cap \mathbb{R}_- = \{0\}.$$

Thus, $b_{-} = 0$, i.e., $b = b_{+}$ and hence $\sigma(b) = \sigma(b_{+}) \subseteq \mathbb{R}_{+}$.

For a C*-algebra A, we have the following

$$A_{+} = \{b^*b : b \in A\}$$
$$= \{b^2 : b = b^*\}$$
$$= \{b : b^*b = bb^* \text{ and } \sigma(b) \subseteq \mathbb{R}_+\}.$$

In particular, A_+ form a subsemigroup of A, i.e., $A_+ + A_+ \subseteq A_+$.

5.2 GNS-construction

The next goal is to represent non-commutative C*-algebras on Hilber spaces, i.e., as C*-subalgebras of bounded linear operators $\mathcal{B}(H)$.

We use A_+ to define a relation \leq on $A_{sa} = \{b \in A : b = b^*\}$ by

$$a \le b \quad \iff \quad b - a \in A_+.$$

Equivalently, $a \leq b$ means $b \in A_+ + a$. Since A_+ is a (additive) subsemigroup of the (additive) semigroup A_{sa} , \leq is transitive. Since $0 \in A_+$, \leq is also reflexive. Since $A_+ \cap -A_+ = \{0\}, \leq$ is also symmetric. Thus \leq is a partial order on A_{sa} .

Proposition 5.39. For any $a, b, c \in A$, if $a \leq b$, then $c^*ac \leq c^*bc$.

Proof. If $a \leq b$, then $b - a = d^*d$, for some $d \in A$. Then $c^*bc - c^*ac = c^*(b - a)c = c^*d^*dc = (cd)^*cd \in A_+$.

Proposition 5.40. For any $a, b \in A$,

$$a^*b + b^*a \le a^*a + b^*b,$$

 $a + b)^*(a + b) \le 2(a^*a + b^*b).$

Proof. For the first inequality, $0 \le (a-b)^*(a-b) = a^*a - a^*b - b^*a + b^*b$. For the second, $(a+b)^*(a+b) \le a^*a + a^*b + b^*a + b^*b \le 2(a^*a + b^*b)$.

Definition 5.41. We call $C \subseteq A_+$ a cone if $0 \in C = C + C = \mathbb{R}_+ C = C^{\geq}$. We call $I \subseteq A$ a *left ideal* if $0 \in I = I + I = \mathbb{C}I = AI$.

Proposition 5.42. If $C \subseteq A_+$ is a cone, then $I = \{b \in A : b^*b \in C\}$ is a left ideal. Moreover I is closed if C is closed, since $b \mapsto b^*b$ is continuous.

Proof. If $a, b \in I$, then $a + b \in I$ since

$$(a+b)^*(a+b) \le 2(a^*a+b^*b) \in \mathbb{R}_+(C+C) \subseteq C.$$

If $a \in I$ and $\lambda \in \mathbb{C}$, then $\lambda a \in I$ since $(\lambda a)^*(\lambda a) = \overline{\lambda} \lambda a^* a \in \mathbb{R}_+ C \subseteq C$. If $a \in A$ and $b \in I$, then $(ab)^*ab = b^*a^*ab \leq ||a^*a||b^*b \in \mathbb{R}_+ C \subseteq C$. Also $0^*0 = 0 \in C$ so $0 \in I$ and hence I is a left ideal.

Definition 5.43. We call $\phi \in \mathbb{C}^A$ positive if $\phi(A_+) \subseteq \mathbb{R}_+$.

Example 5.44. Any character $\psi \in \Phi_A$ is positive.

Proposition 5.45. Every positive linear ϕ is automatically continuous.

Proof. Recall that continuous is equivalent to bounded. For all $a \in A$, a = b + ci, for $b, c \in A_{sa}$ with $\|b\|, \|c\| \leq \|a\|$. For all $a \in A_{sa}$, $a = a_+ - a_-$, for $a_+, a_- \in A_+$ with $\|a_+\|, \|a_-\| \leq \|a\|$. Thus it suffices for ϕ to be bounded on A_+ . If not, we would have $(a_n) \subseteq A_+$ with $\|a_n\| \leq \frac{1}{2^n}$ and $\phi(a_n) = 1$. Then $a = \sum a_n \in A_+$ and $\phi(a) \geq \sum \phi(a_n) \to \infty$, a contradiction.

Any positive linear ϕ defines a positive sesquilinear form $\phi(b^*a)$. Thus the Cauchy-Schwarz inequality gives

$$|\phi(b^*a)|^2 \le \phi(b^*b)\phi(a^*a).$$

Let

$$I = \{b \in A : \phi(b^*b) = 0\} = \{b \in A : \forall a \in A \ \phi(ab) = 0\}.$$

Then I is a left ideal. Cosider the quotient vector space A/I. Let $v_a = a + I$ so $A/I = \{v_a : a \in A\}$. Define $\langle \cdot, \cdot \rangle$ on A/I by

$$\langle v_a, v_b \rangle = \phi(b^*a).$$

This is a well-defined inner product on A/I. Thus, we can complete A/I to obtain a Hilbert space H. Every $a \in A$ determines a map $\pi(a)$ on A/I by

$$\pi(a)(v_b) = v_{ab}.$$

This is well-defined because I is a left ideal. We immediately see that $\pi(a)$ is linear. Also,

$$\|\pi(a)(v_b)\|^2 = \langle v_{ab}, v_{ab} \rangle = \phi(b^*a^*ab) \le \|a\|^2 \phi(b^*b) = \|a\|^2 \|v_b\|^2$$

Thus $\pi(a)$ is bounded and extends to a bounded linear map on H. Also

$$\langle \pi(a)(v_b), v_c \rangle = \langle v_{ab}, v_c \rangle = \phi(c^*ab) = \langle v_b, v_{a^*c} \rangle = \langle v_b, \pi(a^*)(v_c) \rangle.$$

This shows that $\pi(a^*) = \pi(a)^*$, which is its adjoint operator on H. So π represents A on H, i.e., we can identify A with $\pi(A) \subseteq \mathcal{B}(H)$.

So, from positive linear ϕ , we defined a representation $\pi: A \to \mathcal{B}(H)$. It remains to show that such positive linear ϕ exists. In the commutative case, we have lots of characters. Indeed, by Gelfand, commutative C*-algebras have the form $C_0(X)$. Then every $x \in X$ gives a character $f \mapsto f(x)$ on $C_0(X)$. Thus, even for non-commutative A, we have lots of characters on the commutative C*-subalgebra generated by any normal $a \in A$. The issue is that these may not extend to characters on A itself. However, they will extend to positive linear ϕ on A. Proving this relies on Hahn-Banach extension theorem.

Theorem 5.46 (Hahn-Banach). If B is a subspace of a real normed space A, then any \mathbb{R} -valued linear ϕ on B with $\|\phi\| = 1$ has a linear extension ψ on A with $\|\psi\| = 1$.

Proof. By Kuratowski-Zorn, we have a maximal linear extension ψ with $\|\psi\| = \|\phi\|$ on a subspace C containing B. We claim that C = A.

If not, take $a \in A \setminus C$ and note that, for any $b, c \in C$,

$$\psi(b) - \psi(c) = \psi(b - c) \le ||b - c|| = ||b - a + a - c|| \le ||b - a|| + ||a - c||.$$

Take $\lambda \in \mathbb{R}$ with

$$\sup_{\in C} (\psi(b) - \|b - a\|) \le \lambda \le \inf_{c \in C} (\|a - c\| + \psi(c)).$$

Define linear θ on $\mathbb{R}a + C \supseteq C$ by $\theta(\beta a + c) = \beta \lambda + \psi(c)$. Then $\|\theta\| = 1$, contradicting maximality.

Any C-linear $\psi \in \mathbb{C}^A$ gives R-linear $\phi \in \mathbb{R}^A$ by $\phi(v) = \Re(\psi(v))$. Note that $\|\phi\| = \|\psi\|$:

- Certainly, $\|\phi\| \le \|\psi\|$ since $|\Re(\lambda)| \le |\lambda|$, for all $\lambda \in \mathbb{C}$.
- Conversely,

$$1 = \psi(\psi(v)^{-1}v) = \phi(\psi(v)^{-1}v) \le \|\phi\| |\psi(v)^{-1}v| = \|\phi\| |\psi(v)|^{-1}|v|$$

Thus $|\psi(v)| \le ||\phi|| |v|$, for all v with $\psi(v) \ne 0$, so $||\psi|| \le ||\phi||$.

Also $\psi(v) = \phi(v) - i\phi(iv)$ since $\lambda = \Re(\lambda) - i\Re(i\lambda)$, for all $\lambda \in \mathbb{C}$. Conversely, given any \mathbb{R} -linear $\phi \in \mathbb{R}^A$, we can define

$$\psi(v) = \phi(v) - i\phi(iv).$$

Such ψ is \mathbb{C} -linear and $\phi(v) = \Re(\phi(v))$. In other word, swe have a norm-preserving correspondence between real linear functionals on A and complex linear functionals on A.

Corollary 5.47. Any complex linear functional ϕ on a subspace B of a complex normed space A has a linear extension with the same norm on the entirety of A.

Corollary 5.48. A linear functional ϕ on a unital C*-algebra A is positive if and only if $\phi(\mathbf{1}) = \|\phi\|$.

Proof. (\iff) $\phi(\mathbf{1}) = ||\phi||$. We first show that ϕ is self-adjoint, i.e., $\phi(A_{sa}) \subseteq \mathbb{R}$. To see this, take $a \in A_{sa}, n \in \mathbb{Z}$ and let $b = n\mathbf{1} - ia$. Then

$$\|b\|^{2} = \|b^{*}b\| = \|(n\mathbf{1} + ia)(n\mathbf{1} - ia)\| = \|n^{2}\mathbf{1} + a^{2}\| \le n^{2} + \|a\|^{2}.$$

Let $\phi(a) = r + is$. We need to show that s = 0. To see this note

$$\begin{aligned} |\phi(b)|^2 &= |n\phi(\mathbf{1}) - i\phi(a)|^2 = |n\|\phi\| - ir + s|^2 = (n\|\phi\| + s)^2 + r^2 \\ &= n^2 \|\phi\|^2 + 2ns\|\phi\| + s^2 + r^2 \le \|\phi\|^2 \|b\|^2 \le \|\phi\|^2 (n^2 + \|a\|^2) \end{aligned}$$

Thus, $2ns\|\phi\| + s^2 + r^2 \le \|\phi\|^2 \|a\|^2$, for all $n \in \mathbb{Z}$, and hence s = 0.

To see that ϕ is positive, take $a \in A_+$ with ||a|| = 1. By Gelfand, we know that $||\mathbf{1} - a|| \le 1$. Thus,

$$\|\phi\| - \phi(a) = \phi(\mathbf{1}) - \phi(a) = \phi(\mathbf{1} - a) \le \|\phi\|,$$

so $\phi(a) \ge 0$. So if $\phi(\mathbf{1}) = \|\phi\|$, then ϕ is indeed positive.

 (\implies) Conversely, assume ϕ is positive and take any $a \in A$ with ||a|| = 1. Then $||a^*a|| = ||a||^2 = 1$, so $a^*a \leq \mathbf{1}$ by Gelfand. As ϕ is positive, $\phi(a^*a) \leq \phi(\mathbf{1})$ so Cauchy-Schwartz gives

$$|\phi(a)|^2 = |\phi(\mathbf{1}a)|^2 \le \phi(\mathbf{1})\phi(a^*a) \le \phi(\mathbf{1})^2.$$

Since a was arbitrary, this shows that $\|\phi\| = \phi(\mathbf{1})$.

Definition 5.49. A state on a C*-algebra is a positive linear functional ϕ with $\|\phi\| = 1$.

Theorem 5.50. For any $a \in A_+$ we have a state ϕ on A with $\phi(a) = ||a||$.

Proof. Consider the C*-subalgebra generated by a and $\mathbf{1}$ in the unitisation \widetilde{A} . By Gelfand, this is isomorphic to C(X), for some compact X. Evaluating at some $x \in X$ gives ||a||. So we have a character ϕ on this C*-subalgebra with $\phi(a) = ||a||$. Note $\phi(\mathbf{1}) = \mathbf{1} = ||\phi||$. By Hahn-Banach, ϕ extends to \widetilde{A} without changing the norm. By the previous result, ϕ is therefore positive and hence a state.

Corollary 5.51. For any $a \in A$, we have a representation $\pi \colon A \to \mathcal{B}(H)$ with $||\pi(a)|| = ||a||$.

Proof. We may assume A is unital (otherwise unitize then restrict π to A). Take a state ϕ with $\phi(a^*a) = ||a^*a|| = ||a||^2$. Let π be the GNS representation coming from ϕ . Then

$$\|\pi(a)\|^2 \ge \langle \pi(a)v_1, \pi(a)v_1 \rangle = \langle v_a, v_a \rangle = \phi(a^*a) = \|a\|^2.$$

To obtain a faithful representation we combine all these π_a , for $a \in A$, i.e., define

$$\pi(b) = \prod_{a \in A} \pi_a(b) \in \prod_{a \in A} \mathcal{B}(H_a) \approx \mathcal{B}(H),$$

where

$$H = \bigoplus_{a \in A} H_a = \left\{ (w_a) \in \prod_{a \in A} H_a : \sum_{a \in A} ||w_a||^2 < \infty \right\}.$$

Then $\pi(a) = \pi(b)$ if and only if a = b, i.e., we can identify A with $\pi(A) \subseteq \mathcal{B}(H)$.