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1 Introduction

C*-algebra is a set together with operations: sum, product, scalar product, involution, norm.
Simple examples include the complex numbers C, matrix algebra M, (C), algebra of continuous
functions C(]0, 1], C). So, C*-algebras can be non-commutative or infinite dimensional.

C*-algebras provide an abstract way of investigating seemingly different objects like matrices
and continuous functions. These two examples give us two different viewpoints:

C*-algebras = infinite dimensional matrices,

C*-algebras &~ non-commutative topology.

By adding extra structure, one can arrive to other objects, e.g., quantum groups, non-commutative
geometry, von Neumann algebras, etc.

2 Semigroups, monoids, groups

2.1 Semigroups

Definition 2.1. A semigroup (S, ) is a set S together with a binary operation - on .S, which is
associative, i.e., for all a,b,c € S,

a-(b-c)=(a-b)-c
We will also write just abc = a(bc) = (ab)c.

Semigroups are the most basic kind of algebraic structure. They are the building blocks of
other structures like C*-algebras.

Example 2.2. e (C,+) and (C,-) are semigroups.
e (C,®), where a ® b = a?b? is not a semigroup.

e (XX, 0) is a semigroup. Here, XX = {f: X — X} and o is the composition of functions

(fog)(x) = flg(x)).
Definition 2.3. A semigroup S is commutative or abelian if, for all a,b € S,

ab = ba.

Example 2.4. e (C,+) and (C,-) are commutative.
e (M,(C),+) is commutative, but (M, (C),-) is not.

e (X*X,0) is not commutative if | X| > 2.
Definition 2.5. An action of a semigroup S on a set X is a product -: S x X — X such that
s-(t-x)=(st)-x.
Example 2.6. e If S is a semigroup, then S acts on X =5 x S by

s - (a,b) = (sa, sb).



e (XX o) actson X by
fow=f).

Definition 2.7. A subsemigroup of semigroup S is a subset P C S such that PP C P, i.e.,
peP and g€ P = pgeP.

In other words, P is a subsemigroup of S if and only if P is a semigroup itself under the same
semigroup operation.

Example 2.8. e N,Z,Q,R are subsemigroups of C with respect to both - and +.

e —N is a subsemigroup of C under +, but not under multiplication.
Definition 2.9. e A binary relation < on a set S is

— transitive if a < b < ¢ = a < ¢,
— reflexive if a < a for every a € 5,
— antisymmetric if a <b<a = a=0».

A transitive relation is an order.

A transitive reflexive relation is a preorder.

An antisymmetric preorder is a partial order.

A partial order < is total if all pairs a,b € S are comparable, i.e.,
a<b or b=<a.

Example 2.10. e C is a partial order on all sets.

e < is a total order on R.
Given a semigroup S and a subsemigroup P C S, define
a<b <= ac Pbh.
Lemma 2.11. The relation < on S is transitive.
Proof. If a < b < ¢, then we have p,q € P with a = pb and b = ¢c. So,
a = pb = p(qc) = (pg)c.
As P is a subsemigroup, pq € P. Thus, a € Pc and hence a < c. O

Example 2.12. e Ry = {r € R:r > 0} form an additive subsemigroup of R. The
associated < is

a<b<= aceR,+b << a—-beR; < a—b>0 < a>hb.

So < = > is the opposite of the usual order on R .
e Consider the multiplication on S = P = (0,1). Then

a<b<:>aePb<:>%eP<:>%<1<:>a<b.

So, < = < is the usual strict order on (0, 1).



Definition 2.13. A map ¢: S — T between semigroups is a homomorphism if ¢(ab) =

P(a)o(b).

Example 2.14. e The modulus ¢: C — R, defined by ¢(a) = |a| is a multiplicative
homomorphism since |ab| = |al|b].

e The modulus is not an additive homomorphism.

e The determinant det: M, (C) — C is a multiplicative homomorphism since det Adet B =
det AB.

Definition 2.15. A *-semigroup is a semigroup together with an operation a — a* such that

(ab)* = b*a”, (antihomomorphism)
a** = a. (involution)
Example 2.16. e Any commutative semigroup is a *-semigroup with a¢* = a.

e M,(C) is a *-semigroup.
Definition 2.17. We call an element of a *-semigroup S

e normal if aa™ = a*a,

e self-adjoint if a = a*,

e positive if a = bb*, for some b € S.
Lemma 2.18. FEwvery positive element is self-adjoint. Every self-adjoin element is normal.
Proof. Positive implies self-adjoint:

a=>bb" = a* = (bb*)" = (b")"b" =bb" = a.

Self-adjoint implies normal:
a=a" = aad* =aa=a"a.

Lemma 2.19. An element a is positive if and only if a = b*b, for some b € S.
Proof. If a = bb* = b**b*, then a = c*c for ¢ = b*. O
Example 2.20. Consider (C,-) with a* =@ (complex conjugation).

e Since multiplication is commutative, every element in C is normal.

e The self-adjoint elements in C are exactly R.

e The positive elements in C are exactly R;..

If we consider (C,+) instead, the normal and self-adjoint elements are the same as for (C,-).
However, the positive elements are R.

Definition 2.21. Let S be a semigroup.

e We call an element 0 € S absorbing if, for all a € S, 0a = 0 = a0.
e We call an element 1 € S identity if, for all a € S, la = a = al.

Note that absorbing elements and identities are unique.



2.2 Monoids

Definition 2.22. A monoid is a semigroup M with an identity 1 € M. We call b € M an
inverse of a € M if
ba =1 = ab.

In this case we say a is invertible and often write b = a~!. Note that inverses are unique and
(a=1)~! = a. The invertible elements form a submonoid of M.

Example 2.23. e (C,+,0) is a monoid.
e (C\{0},-,1) is a monoid.
o (M,(C),-, I), where I is the identity matrix, is a monoid.

Definition 2.24. A monoid action is a semigroup action -: M x X — X such that for all
re X,
l-z=u.

Note that if a € M has an inverse a=! € M, then ax =y = a 'y = z.

2.3 Groups

Definition 2.25. A group is a monoid G where every g € G has an inverse ¢! € G.

Example 2.26. Since (gh)™' = h~lg7! and (¢7!)"! = g, every G is a *-semigroup with
g* = g~!. We determine the normal, self-adjoint and positive elemnets in G

e Normal elements are the whole G since g~'g =1 = gg~%.

e Self-adjoin elements are elemnets of order 2 since g~' =g <= ¢> = 1.

e Positive is only the identity element since 1 = gg—!.

Example 2.27. GL,(C) = {4 € M,,(C) : det(A) # 0} is a group and SL,,(C) = {A € M,(C) :
det(A) = 1} is its subgroup.

Definition 2.28. We call H C G a subgroup of a group G if
leH, HHCH, and H !'CH.
Proposition 2.29. A subset H C G of a group G is a subgroup if and only if HH™* C H # ().

Proof. If H is a subgroup, then HH ' C HH C H and 1 € H, so S # 0.

Conversly, assume HH~' C S # (). Taking any h € H, we have 1 = hh™' € HH~' C H.
Thus, H ' = 1H ' C HH ' C H. So, H= (H')"' C H! and hence HH C HH ! C
H. [

Theorem 2.30. If G is a group then H C G is a subgroup if and only if H{G\H) C G\H # G.

Proof. Suppose that H is a subgroup, h € H and ¢ € G\ H. Then hg € H would imply
g € H C H''H C HH C H. This contradicts ¢ € G\ H. So hg ¢ H and hence
H(G\H)CG\H.

Conversely, assume that H(G\ H) C G\ H # G. If 1 ¢ H, then taking any h € H, we have
h=hle H(G\ H) C G\ H, contradicting h € H. Thus 1 € H.

If he€ Hand h™' ¢ H, then 1 = hh™' € H(G\ H) C G\ H. This cotradicts 1 € H. So,
HlCH.

Now, if h,k € H and hk ¢ H, then k = h™'hk € HY(G\ H) C H({G\ H) C G\ H,
contradicting k € H. Thus, HH C H and hence H is indeed a subgroup of G. O



3 Vector spaces, algebras

3.1 Vector spaces

Definition 3.1. A (complex) vector space is a commutative group (V,+,0) together with a
scalar product (a,v) — av: C x V' — V such that

a(v+w) = av + aw,
(a+ B)v = av + P,
a(pv) = (af)v,

1lv =w.

In other words, v — av is a homomorphism (V,+) — (V,+), for each a« € C, a — aw is a
homomorphism (C, +) — (V,+), for each v € V, and (o, v) — awv is a monoid action of (C, -, 1)
onV.

Example 3.2. C, C x C, M, (C), C(X,C) = {continuous X — C}.
Definition 3.3. We call W C V a subspace of a vector space V if
W#0, CWCW, and W+ WCW.
Subspace is also a subgroup since
{0} =0WCCWCW and —-W=(-1)WCCW CW.
Lemma 3.4. W is a subspace if and only if ) #W =W + W = CW.

Proof. W =W + W = CW implies W + W C W and CW C W. Conversely, assume that
W4+ W C W and CW C W hold. Then in fact = holds since W = 1W C CW and W =
O+WCW4+W. O

Lemma 3.5. If F is a family of subspaces, then (\F is also a subspace.

Proof. Take v,w € (| F. This means that v,w € W, for every W € F. As W is a subspace,
v4+w e W. As W was arbitrary, v + w € (| F. Thus, (F +(F C [ F. Likewise, CNF C
NF. O

Definition 3.6. The span of any S C V is the smallest subspace containing S, i.e.,
span(S) = ﬂ{W : S C W and W is a subspace of V'}.

Equivalently, span(S) is generated by S, i.e.,

n
span(S) = {Zaksk:al,...,an € Cand s1,...,8, € S}.
k=1

Note that the exception is S = (), in which case span(()) = {0}.

Definition 3.7. The dimension of V is the smallest cardinality of a spanning subset, i.e.,

dim(V) = min{|S| : span(S) = V'}.



Example 3.8. e dim({0}) =0, dim(C) =1, dim(C x C) = 2, dim(M>(C)) = 4.

e Some vector spaces have infinite dimesnion, e.g., the space coo(C) of sequences of complex
numbers that are eventually zero,

co0(C) = {(a1,2,...) : IneNVE>n (o =0)}.

Note that coo(C) = |, ey Vn, where V,, &= C" is the subspace

neN
Vn = {(041,0427. . ) Vk Z n (Oék = O)}
Since (V3,) is strictly incerasing, with respect to C, ¢oo(C) has infinite dimension.

Definition 3.9. We call S CV linearly independent if S has no proper spanning subset, i.e.,
R C S = span(R) C span(9).

Equivalently, S C V is linearly independent if and only if whenever we have finite distinct
$1,...,8, € S and finite a1, ...,a, € C,

aisi+-opsp =0 = o= =ap, =0.
Definition 3.10. A basis B C V is linearly independent spanning set, i.e. V' = span(B).

Theorem 3.11 (Kuratowski-Zorn Lemma). If (P, <) is a partially ordered set such that every
totally ordered subset T C P has an upper bound p € P, then P has a maximal element.

Proposition 3.12. Every vector space has a basis.

Proof. Let P ={S C V : S is linearly independent}. Any totally ordered T C P has an upper
bound. Specifically, S = |JT is linearly independent. If not, then we would have s € S with
s € span(S \ {s}). But then s € span(F'), for some finite F' C S\ {s}. For each f € F U {s},
we have some T € T with f € T. Since T is totally ordered and F' is finite, these T’s have a
maximum, i.e., we have some 7' € T with F'U{s} C T. But then s € span(F") C span(T"\ {s}),
contradicting 1" € T.

By Theorem there is a maximal linearly idependent subset S C V. By maximality,
if v e V\S, then SU{v} is not linearly independent, so v € span(S). Since v was arbitrary,
V\ § Cspan(S). Certainly, S C span(S), so, V= SU (V \ S) = span(5). O

Proposition 3.13. If B CV is a basis of a vector space V', then dim(V') = |B].

Example 3.14. e dim(coo(C)) = |N|, ¢oo(C) has standard basis (e,)nen, where e, =
(0,...,0,1,0,...) with 1 on the nth position.

o (en)nen is not a basis of ¢(C) = {(a1,a2,...) : ap — 0} since (1,1/2,1/3,...) ¢
span(ep )nen. In fact, dim(co(C)) = |R| > |NJ.

Definition 3.15. Let V and W be vector spaces. We call T: V — W linear if T is a vector
space homomorphism, i.e.,
T(v+w)=T()+T(w),
T(aw) = aT(v).



Let £L(V) = {T € VV : T is linear}, where dim(V) = n. If we fix a basis of V, then there is a
matrix representation Mz of T. So T~ My is a homomorphism from (L(V'),0) — (M, (C),-).
Since we can also define Tyy € L(V), for any M € M,(C), T — My is an isomorphism.
Changing the fixed basis, changes the isomorphism.

Definition 3.16. An inner product is a map (-,-): V x V — C such that

<’U + w7x> = <’U,JZ> + <w7x>7

(aw,w) = a(v, z),

(v, w) = (w,v),
v#0= (v,v) > 0.

The map v — (v, x) is linear, for z € V, and (-, ) is conjugate-symmetric. The map v — (x,v)
is conjugate-linear.

Example 3.17. The standard inner product on C" is (-,-): C" x C" — C defined by

<v,w> = szm
i=1
If M € M,(C), then
(v, Mw) = (M*v,w),

where M* is the conjugate transpose of M. This is the * operation on matrices. Generally, if
dim(V') < oo and (-, -) is an inner product on V, then every T' € L£(V') has unique adjoint, i.e.,
T* € L(V) such that

(v, Tw) = (T*v,w).

Definition 3.18. A *-vector space is a vector space V together with a map *: V' — V such
that

(v+w)" =v* +w",
In other words, v — v* is conjugate-linear. Note that (V, +,*) is a *-semigroup since (v+w)* =
v 4wt =wt 4ot
Example 3.19. C3? with (a1, ag, a3)* = (a1, az, a3) is a *-vector space.
3.2 Algebras
Definition 3.20. A *-algebra is a *-vector space (A4, +," ) and a *-semigroup (4, -,* ) such that
(a+b)c=ac+bc and (ab)c= a(bc).
In other words, a — ac is linear, for each ¢ € A.

Lemma 3.21. The map a — ca is linear.



Proof.

e(a+b) = (cla+b)™ = ((a+b)*¢") = ((a" +b")e")"

O
Example 3.22. e M, (C), or equivalently £(V), for dim(V) < oo, is a *-algebra.
o O(X,C), C(X, M,(C)) are *-algebras.
Definition 3.23. A metric on a set X is a function d: X2 — [0, 00) such that
d(x,y) = d(y, ©), (symmetry)
dz,y) =0 <= z =y, (coincidence)
d(z,y) < d(z,z) +d(z,y). (triangle inequality)
Definition 3.24. A metric d on a vector space V is compatible if
dv+z,w+ ) =d(v,w), (translation invariant)
d(av, aw) = |ald(v,w). (homogeneous)
Definition 3.25. A function ||-||: V' — [0,00) is a norm if
[v] =0 = v=0, (definite)
v+ wl|| < |v]| + |Jwll, (subadditive)
|lav]| = |al||v]|. (homogeneous)
Lemma 3.26. There is a norm ||-|| on V if and only if there is a compatible metric d on V.
Proof. Let d be a compatible metric on V. Define ||v|| = d(v,0). The translation invariance
gives
Ao, w) = d(v + (—w),w + (—w)) = d(v — w,0) = v — w]|
Further,
0= || =d(v,0) < v=0,
low]| = d(0, av) = d(a0, av) = [a|d(0,v) = |allv],
[+ w| = d(0, v+ w) < d(0,v) + d(v, v+ w) = d(0,v) + d(0, w) = [[v]| + [lw]|.
Thus, ||v]| = d(v,0) is a norm.
Conversely, if ||-|| is a norm, then d(v,w) = ||v — w|| is compatible.
O=dv,w)=|v—w| <= v-—w=0 <= v=uw,
d(v,w) = [lv —w| = [ = 1Jo —w| = [w = v]| = d(w,v),
dv,w)=|lv—wl|=|v—z+z—w| <|v—2z|+|z+w|=dwvz)+dzw).
Since d(v,0) = ||v — 0]| = ||v]|, these constructions are mutually inverse. O



Definition 3.27. A normed space is a vector space together with a norm ||-||.

Definition 3.28. A normed *-algebra is a *-algebra A together with a norm [|-|| satisfying
l|ab|| < l|all[|b], (submultiplicative)
la*|| = la]. (*-invariant)

3.3 C*-algebras

Definition 3.29. We call a sequence (v,)nen € V in a metric space V' Cauchy if
Ve >0 3k e NVj >k (d(vj,vg) <€),

or, equivalently,
Ve >03M e NVj, k> M (d(vj,vg) < €).

V is complete if every Cauchy (v,) C V converges to some w € V| i.e.,
Ve >0 3k e NVj >k (d(vj,w) <e).
Example 3.30. R and C are complete with respect to d(v,w) = |v — w].

Definition 3.31. A Banach space is a complete normed space. A Banach *-algebra is a
complete normed *-algebra. A C*-algebra is a Banach *-algebra such that

la*all = [|a*||]|a]|- (*-multiplicative)
Observation 3.32. *-invariant and *-multiplicative hold if and only if
la*al| = [|a]*. (C%)

Example 3.33. For any set X and f € C¥, define || f|| = sup,ex |f(z)| and f* = f. Then

o(X) = {f € CX 1 | f] < o0}
is a commutative C*-algebra. Each f € £°°(X) can be veiwed as a linear operator on

P(X)={geC*:{g,9) < oo},
the inner product spece where (g,h) = > % g(x)h(x), namely

Trg = fg.

Moreover, (fg,h) = (g, Th) = (g, f*h) and [[f]| = supjyy, 1 |fg]l,- We need to consider more
general linear operators to obtain non-commutative C*-algebras.

Example 3.34. If X is a metric space, then
CP(X) = {f € £°°(X) : f is continuous}
is a C*-subalgebra of £>°(X).

Proposition 3.35. In a normed space, f(x) = |z| defines a continuous function.
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Proof. o]l = & —y+yll < llz — yl + lyll- So, llz — llyll < = — yll. Likewise, [ly]| - [l] <
ly— =l = & = yll. So, lllzll—Ilyll| < = — yll. Taking y = ., we see that [z — ]| — 0 implies
]l = llzalll = 0. 0

Definition 3.36. For any linear map 7' € WV between normed spaces, we define the operator
norm of T as

T
IT] = sup |T(@)] = sup L
lzll<1 e#0 ||z

This defines a norm.
Proposition 3.37. T is continuous if and only if T is bounded, i.e., ||T|| < co.

Proof. If T is bounded and z,, — =, then T'(x,) — T'(x) since
1T (xn) = T(@)|| = [T (xn — 2)|| < || T[l[lzn — =[] = 0.

Conversely, if T is not bounded, we have (x,) C V! with ||T(x,)|| — co. Then

Yn = o——Tn — 0
1T ()
e ! I7(z0))
x
7t = | ()| = et =
1T () 1T ()|
Thus T'(yn) # 0 = T(0) and hence T is not continuous. O

We denote the bounded linear operators on a normed space V by
B(V)={T eL:|T| <oc}={T € VYV . T is linear and ||T| < oo}.
Theorem 3.38. If V is a Banach space the B(V') is a Banach algebra.

Proof. B(V) is a normed algebra, we need to show completeness. Let (7;,) C B(V') be Cauchy,
ie, ||T,m —Tnl| — 0 as m,n — oo. Then for each v € V, we have ||T),(v) — T, (v)| <
| T — Tullllvll — 0. So, the sequence (T, (v)) is Cauchy. Since V is complete, we can de-
fine T'(v) = lim T},(v). Linearity of T follows from the linearity of each 7T},. By Proposition
norm is continuous, and ||Tv| < sup, [|T.(v)|| < sup, [|T||||v||. Thus ||T|| < sup, ||Tn| < oo
since (7},) is Cauchy. So, T € B(V). O

Definition 3.39. A sesquilinear form on a vector space V is a map (-,-): V x V — C that is
linear in the first coordinate and conjugate-linear in the second, i.e.,

<v +w’x> = <U7x> -+ <w,x>,
<’U,.TU + y> = (’U,.CC> + <’U7y>a
(v, z) = Ao, z) = (v, Az).

A sesquilinear form is real/positive/strictly positive if for all z € V\{0}, (z,z) € R/Ry /R4 \{0}.
Every sesquilinear form is conjugate-symmetric: (x,y) = (y,x). Inner product is strictly positive
sesquiliner form. For a positive sesquilinear form, we define ||z| = \/(z, x).

11



Theorem 3.40 (Caychy-Schwartz Inequality). For any positive sesquilinear form,
(v, w)| < [[v]ll|w]]-

Proof. Since (-,-) is positive, (z,z) > 0 for z = (w,w)v — (v,w)w. It sufficies to exapnd this
using other inner product properties. O

Corollary 3.41. In any inner product space, ||z|| = +/(z,x) defines a norm.

Proof. ||-|| is homogeneous since (-, -) is sesquilinear. ||-|| is definite since (-, ) is positive definite.
||| is subadditive by Theorem [3.40] O

Lemma 3.42. Inner product spaces are exactly normed spaces satisfying
2ljw]|? + 2||lw|]® = |lv + w|* + v — w]|*. (parallelogram law)

Definition 3.43. A Hilbert space is a complete inner product space, i.e., complete with respect
to
d(v,w) = ||[v —wl|| = /(v —w,v — w).

Example 3.44. (*(X) = {g € C* : (g,9) < 0o} is a Hilbert space where (g, h) = 3",y 9(x)h(z).
By Theorem this is well defined inner product:

> lg@h(@)l = lg@)lh(@)] <[> lg(@)? [> h(z)]? < oo.

z€X z€X z€X z€X
Definition 3.45. We call a subset C' of a vector space V convex if
Ae0,1] and z,yeC = X+ (1—-NyeC.
We call a subset C' of a metric space V' closed if
CoOxp—y — yeC.

Theorem 3.46. If H is a Hilbert space, then for any v € H and closed conver C C H, we can
find a point w € C minimizing the distance to v, i.e.,

v —wl|| = inf [jv— 2.
zeC

Proof. Take a sequence (z,) C C with ||v — z,| = d = infyec ||v — z||. So for e > 0, we have
m € N such that ||[v — z,|| < d+¢, for n > m. Then

|zn — mmn2 = |lzn —v+0v - anZ
= 2|z — v]|* + 2||v — Z||* = ||[(2n —v) — (v — z)||*  (parallelogram law)
1 2

= 2[|v — zu||* + 2[lv — 2m|® - 4”2($n + ) — v

<2d+e)+2(d+e) —4d = 4e.

Thus (z,) is Cauchy and hence x,, — w, for some w € H. Since C is closed, we have w € C. [
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Definition 3.47. For a Hilbert space H and S C H, let
L={yeH:V¥seS ((s,y) =0)}

be the orthogonal complement of S in H.

Corollary 3.48. If V is a closed subspace of a Hilbert space H, then H =V 4+ V.

Proof. By Theorem for any x € H, there is w € V with ||z — w|| = inf,ev ||z — v||. Thus,
for any v € V, we have

(x —w,x —w) < (x—(w+v),z— (w+v)),
(v, y) <{y —v,y —v), (substituting y = x — w)
(W, y) < (v, ) — (g, 0) = (v,9) + (v, 0).
2R((y, v)) < (v, v).

Replacing v with tv for t € R or ¢ € iR shows (y,v) = 0. Thus, z =z —w+w =y +w €
VitV O

Theorem 3.49 (Riesz Representation). If H is a Hilbert space, then every continuous linear
¢ € CH is defined by
¢(z) = (z,v), for a unique v € H..

Proof. Since ¢ is continuous, V = {z € H : ¢(z) = 0} is closed. Thus H =V + V. Note that
V< has dimension at most 1. If V- = {0}, then V = H and we can take v = 0. Otherwise,
take w € V+ with ||w| = 1 and let v = ¢(w)w. Then

(w,v) = (w,6(w)w) = ¢w)(w,w) = ¢(w).

Also, for any z € V,
(z,v) = ¢p(w)(z,w) =0 = ¢().
Thus, ¢ and (-,v) agree on V and V+ and hence on H.
For uniqueness, suppose that (x,v) = (z,w), for all x € H. Then (x,v —w) = 0, so
(v —w,v —w) =0, and hence v — w = 0. O

Theorem 3.50. For every bounded linear operator T on a Hilbert space H, there is another
adjoint bounded linear operator T on H satisfying

(Tv,w) = (v, T"w).

Proof. From Theorem [3.40] and boundedness of T', we get [(Tv,w)| < ||T||v||||w]. So ¢w(v) =
(Tv,w) is bounded. By Theorem we have unique u € H such that (Tv,w) = ¢, (v) =
(v,u). The define the mapping 7™ by T*(w) = u. The mapping 7™ defined in such a way is
linear and || 77| < ||T|| since

[T wl[| = sup [(v, T"w)| = sup [(Tv,w)| < ||T[|[[w].
veH! veEH!

It is easy to check that T** = T and ||T*T|| = |T||>. We get the following
Corollary 3.51. B(H) ={T € L(H) : ||T|| < oo} is a C*-algebra.
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4 The spectrum

4.1 Unital algebras

Definition 4.1. The spectrum of an element b of a unital algebra A is given by
o(b) ={X € C: A1 — b is not invertible}.
Example 4.2. o If A= CX with pointwise operations, then for any f € A,
o(f) =ran(f) = {f(z) : w € X}
To see this, let f(z) = A. Then for all g € A,
(AL = fg)(@) = (A = f(x))g(x) = 0.

Thus (A1 — f)g # 1 so A1 — f is not invertible, i.e., A € o(f). Conversely, if A ¢ ran(f),
then for all x € X, we can define

Since (A1 — f)g = 1, g is the inverse of (A1 — f), i.e., A &€ o(f).

e For general algebras, we can think of o(a) as an “abstract range”.

Definition 4.3. If V is a vector space, the point-spectrum of any T' € L(V') is given by
op(T) ={r € C: Ker(A\1 - T) # {0}}.

So, A € 0p(T') means that there is a non-zero w € Ker(A1—-T), i.e., T'(w) = Aw. In other words,
w is an eigenvector of T' with eigenvalue X\. Then (S(A1 —T))(w) =0, for all S € L(V), so

op(T) = {X € C: Xis an eigenvalue of T'} C o(T).
Observation 4.4. 0,(T) = o(T), for all T € L(V), if and only if dim(V') < occ.
Definition 4.5. The spectral radius of an element b of a unital algebra A is given by
o = sup{[Al : A € o(B)}.

Example 4.6. o If f € A=CX, then |f|, = sup,ex |f(z)| = || f]|-
o If T'e L(V), where dim(V') < oo, then

T, = max{|A| : Tw = Aw}.

0 1
=0 o)

o If

then |T|y =0 < 1= ||T.
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o If Tw = Aw, for w # 0, then for any n € N, || < HT"H% since
A" wll = [N w[| = I T"w] < [[T"|[[[w]].
Thus, if dim(V') < oo, then
. 1
Tl < int 7]
Proposition 4.7. For any b in a normed algebra A (or even a “normed semigroup”)
Hb”||% — inf Hb”H% as m— oo.
neN

Proof. Given m € N, write n = d,,m + ry,, for 0 < r,,, < m. So,

dmm

1
n m ) dm Tm miL\ n Tm
< o™ ol = (o) T el

1 mN\dm 1.7m
o < @yt

As n — oo,

dmym n-—r n—m T m
m = ™ < —1 and =2 < ——0.
n n n n n

Thus,

dmm

m 1 n 'm m 1
(Hem =) ™ il — 1o

So for any € > 0, we eventually have
nnl L
17 [ < o™ [ + e

Since m was arbitrary, this shows that the infimum is a limit. O

4.2 General spectrum

To extend o to non-unital algebra A, we consider ® on A given by
a®b=a+b—ab.
Observation 4.8. The operation © is associative with identity 0: (A, ®) is a monoid.
If Ais unital, thenl —a®b=1—a—b+ab=(1—a)(1—0b). So,
a—1—-a

is a semigroup isomorphism (A, ®) — (A4,-). So 1 — b is invertible in (A4, -) if and only if b is
invertible in (A,®). When X # 0, A\1 — b = A~!(1 — A71b), so this means

o)\ {0} = {x: A 1b is not ®-invertible}.

This makes sense even for non-unital A.

Definition 4.9. The non-zero spectrum of an element b of any algebra A is given by
o(b)\ {0} = {X: A7'b is not G-invertible}.

We declare 0 € o(b) if and only if b is invertibles with respect to the usual product -. In
particular, if A is not unital, then 0 € o(b), for all b € A.
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Example 4.10. If A = ¢y(N) = {f cCN: f(n) — O}, with pointwise operations, then

o(f)\ {0} = ran(f)\ {0}.
To see this, let f(z) = A # 0. Then for all g € A,
Ao g)() = AT (@) + g(z) = AT f()g(a) = 1+ g(x) — g(z) = 1.

Thus, (A™'f ® g)(x) # 0 so A~1f is not G-invertible, i.e., A € o(f). Conversely if A ¢ ran(f),
then A~!f has an ®-inverse g defined by

We will denote the ® inverse of b by 0°.
Theorem 4.11. In any algebra A, if s = —> >, (b° ® a)" is defined, then
a®s=hb.

Proof. Note that
s=-=b"0a+ (b°®a)s

and
b=a—-b0"0a+b(0°©a).

So,

a®s=a+s—as
=a+s+(b—a)s—bs
=a—-b'0a+(°Ga)s+ (b—a)s+b(b° ©®a)—b(d° ©®a)s
=a—-b0"0a+bb°®a)+ (" Oa+b—a—>b0b°®a))s
=a—-b0"0a+b°®a)+(b—a+b°©a—>b(b°®a))
=b.

Corollary 4.12. If A is a Banach algebra then, for any b € A,

inf Hb"H% <1l = bis ®-invertible.
neN

Proof. Take v with infpey Hb”||% < v < 1. Since “inf = lim” here, for large j, we have

k k k ;

T n n 7‘7 .
E'b SE'HbHSEj Sﬁ—)O as j — o0.
n=j n=j n=j

So, since A is complete, s = —> 2, 0" = —> > (0° © b)" is defined. By Theorem [4.11]

n=1

b® s =0. Likewise s ©b =10, so s = b°. O
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Corollary 4.13. If A is a Banach algebra, then, for any b € A,
bl < inf o).
Proof. For any \ > inf, Hb”H%,
i O = mf A0 = it T < 1
Thus A~'b has a ®-inverse by Corollary So A ¢ o(b), by the definition of spectrum. [

Corollary 4.14. In any normed algebra A, b+ b° is continuous whenever it is defined.

Proof. By taking the completion, we may assume A is a Banach algebra. If ||b|| < 1, then
- - 161l

SS e < S < .
2= M=

Thus, if ||b|| — 0, then also |[b°|| — 0, i.e., b — b° is continuous at O.
Now, fix ®-invertible b € A. If a — b, then b° ®a — b° ©® b — 0. So,

16°]] = ’

o0

Sq = —Z(bO ®a)" = 0.

n=1
From a ® s, = b, we get a® = s, ©® b° — b°, as a — b. Thus, a — a° is also continuous at b. [
Lemma 4.15. Ifb € A, for a Banach algebra A, then o(b) is compact.

Theorem 4.16. If A is a (complex) normed algebra, then, for any b € A,
blo > inf [[b"]|.
neN

Proof. For contradiction, assume that |b|, < inf, Hb”H% = r. Then the G-inverse (A\715)° is
defined whenever [A| > 7. So, A — (A7!b)° is uniformly continuous on

{AeC:r<|N<r+1}.

Take any such .
Let o!,...,a™ be the n' roots of 1 in C. Let \; = o)\, for 1 < k < n. By the factor

theorem,
n
1- H (1— )\ x)
In the polynomial algebra C[z], this is equivalent to
A\l = troNtre oM
Substituting b for x, we get the follwoing equation in the algebra A:

A = AT e N e oA
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Since each A, 'b is G-invertible, so is (A7'b)". Let

n—1
ch=— > NI ==X — A = AT
j=1
Then
A7) = AT o ¢,
S0,
(A 10)° = O (A 10)")°.
If o™ =1, then
zn:ak_a—a”“_a—a_o SO zn:c 0
11—« l—a k=
k=1 k=1
Thus,
D) =D (e @ (ATD)™°) = n((A D))",
k=1 k=1
SO
— n\o 1 = — (o]
(A1) == (D)
k=1
Now,
- n\o — n\o 1 - — [¢] — o)
[(ATT)™)° = ((r 1)) < - (A 10)° = (r, '0)°]-
k=1

By uniform continuity, for any € > 0, we can pick A > r with

H((oz)\)_lb)o - (ow“_lb)OH <e, forall a with |o| =1.

Then
(0™ = (o)) < e
But,
H()\*lb)”H < (])\*1|||b”|]%)" — ()Flr)" — 0, so (()\*lb)”)o — 0.
Thus,

H((rilb)")o — 0, so (rilb)”—>0.

But this contraticts
_ _ -1
[ o)™ || = (™| > o™~ 6™ = 1.

Corollary 4.17. If A is a Banach algebra, then for any b € A,
e tnid
bl = inf 6" .

1
Note that |b|, only depends on the algebra structure of A and inf,, ||b"||» only depends on
the norm and product structure.
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Corollary 4.18. If A is a C*-algebra, then for any self-adjoint b € A,
b = [|b]]-
Proof. If b= b*, then ||t?|| = [[b*b]| = [|b||°. By induction, |[p*"|| = [|||*". Thus,
1
o[} = [|o"[|>* — [b]o
by Corollary O

Corollary 4.19. If A and B are C*-algebras and w: A — B is a *-algebra homomorphism,
then
[ [

Proof. If A\™ta is ®-invertible, then so is 7(A~ta) = A"'m(a). Thus, o(7(a)) C o(a) and hence
|m(a)|e < lals. If a is self-adjoint, then so is 7(a) and hence ||7(a)|| < ||a||, by Corollary
For general a € A, |7 (a)l| = /[x(a*a)[| < /[la*al] = [la]. O

Corollary 4.20. C*-algebra norms are ungiue.

Proof. If ||-|| and ||-||" are C*-algebra norms on a *-algebra A, taking 7 = id and applying
Corollary we get [|a|| < [la]|" < |la||, for all a € A. O

5 Representations

Spectral theory will be applied to obtain representations. Recall that, for any set X, we have
commutative C*-algebra

Po(X) = {f € C 1 |7]) < o},

where || f|| = sup,cx |f(z)]. ¢°°(X) also has many C*-subalgebras, e.g., any topology on X
determines C*-subalgebra of continuous bounded functions C®(X). Given z € X, we have a
further (potentially non-unital) C*-subalgebra

A= {f e Ct(X) : f(x) :o}.

It turns out that all commutative C*-algebras can be represented as C*-algebra of continuous
bounded functions on a topological space, vanishing at a particular point in the non-unital case.

Basic idea. Given a C*-algebra A, we can consider characters on A:
Pp={ve CA: ¢ is a (*-)algebra homomorphism }.
Every b € A determines a function b: ® 4 — C, defined by
b(¥) = Y (b).

Then b+ b is a homomorphism A — 0°(D4):

~

o ab = b because ab(y)) = 1(ab) = 1(a)ih(b) = A()b(¥)) = (@b)(1)).
o Similarly, a + b =a -+ b, b* = b*, and \b = \b.
o [[bll <b (< 00) because [b(w)| = [:(b)] < [[4]l[[b]| < [1b]]-

However, b — b may not be an isomorphism. For example, if A = M5(C), then ®4 = {0}, so
b=0, for all b € A. The goal is to show that ||b]| = ||b||, for all b € A, when A is commutative.
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5.1 Gelfand representation

It will be convenient to add a unit to any non-unital algebra A. Algebraically this is simple: let
A" = A x C with

(a7)‘ t= (a*,X),
Aa,y) = (Aa, ),
(@A) + (b,7) = (a+b,A +7),
(a,A)(b,7) = (ab+ ya + Ab, Ay).
Then A’ is a *-algebra with *-subalgebra A x {0} isomorphic to A. But, A’ also has a unit
(0,1).
Defining a norm to make A’ a C*-algebra is more tricky. One could define *-algebra norm

by ||(a, )| = [la|]| + |A], but this norm might not satisfy the C*-condition, namely it might

happen that [|(a, A)*(a, A)[| # [|(a, )[|*.
Theorem 5.1. A’ is a C*-algebra under the norm

(@, M)l = sup [lab+ Ab||.
lblI<1

Proof. Note that this is the operator norm, considering (a, \) € B(A), defined by
(a, A\)(b) = ab+ Ab.

This makes sense also algebraically with how the operations on A were extended above and also

|(a,0)|| = ||la]|. Thus, the norm is an algebra norm. Also, 1 dimensional extensions of Banach

spaces are always complete. So we only need to check the C* norm condition ||z||* < |lz*z].
For any (a,\) € A’,

(@, MII* = sup [I(a, A)(B)|* = sup [|ab+ Ab||*

[[bll<1 bl <1
= sup [|(b*a* + Ab")(ab+ Ab)||
[[bll<1
= sup Hb*[(a*,X) o (a, )\)](b)H
[[bll<1
= sup [|[(a*,A) o (a, V)] (D)]|
[[bll<1
= [Ia™, ) (@ M|
= [I(a, A)*(a, A)||
Thus, the C* norm condition holds. O

Proposition 5.2. Fvery character on a Banach algebra is automatically continuous.

Proof. Consider a character, i.e., an algebra homomorphism ¢: A — C. For any a € A,
{¢(a)} = o(¢(a)) € o(a). Thus |¢(a)| < als < [|af, ie., [lo]] < 1. 0

Proposition 5.3. If ¢ is a character on A C A’ = A+ C1, then
¢'(a+ A1) = ¢(a) + A

defines a character ¢' on A’ extending ¢ on A.
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Theorem 5.4. Characters take real values on self-adjoint elements of C*-algebras.

Proof. Let ¢ be a character on A. Extend ¢ to A’ = A+ C1. Given a € A and t € R, define

o0

; 1
et = Z — (ita)".
n!

n=0
Thanks to completeness, this is always well-defined. If a = a*, then

o0

zta § : —zta —zta )

Thus,
HeitaHQ — H(eita)*eitaH _ He—itaeitaH — HQOH — ||1|| - 1.
So, ‘
L= ||gll > [¢(e)] = |e"@] = 7,
where ¢(a) = s+ ri. If r # 0, then for large positive or negative ¢ this would be impossible.
Thus, ¢(a) = s € R. O

Corollary 5.5. Characters on C*-algebras are automatically *-homomorphisms.

Proof. For any a € A, b = 4(a* +a) and ¢ = }i(a* — a) are sefl-adjoint. Moreover, b+ ic =

3(a* +a)—i(a* —a) =a. Usmg Theorem if ¢ is a character, then

¢(a”) = ¢(b—ic) = ¢(b) — ip(c) = ¢(b) +i¢(c) = ¢(b +ic) = p(a).

Definition 5.6. An ideal in an algebra is a subspace I such that, for all b € A,
bIUIbC 1.

Given an ideal I, we can form the quotient algebra A/I. The elements of A/I are subsets
of the form b+ I, for b € A. We define (a + I)(b+ I) = ab+ I. This is well-defined since, for
all j,k eI,

(a+5)b+Ek)+1=ab+ak+ jb+ jk+1=ab+1.

Likewise, define (a +1i)+ (b+ 1) =a+b+ 1 and AM(a+I) = Aa+ I. If A is a normed algebra
and [ is a closed ideal, then defining

+I|| =inf |la +j
la | }e[ la+ jl
turns A/I into a normed algebra as well.

Definition 5.7. An ideal I in an algebra A is modular if A/I is unital.

Proposition 5.8. If A is a commutative algebra, then any e € A defines a modular ideal

I.={a—ae:ac A}
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Proof. For any b € I. and ¢ € A, we have a € A with b =a — ae, so
be = cb = c(a — ae) = (ca) + (ca)e € I.
Likewise, we can verify I, to be a subspace and hence an ideal. Moreover,
(e+I)(c+I)=e+I.=c—c+ec+I.=c+ L.
Thus, e + I, is a unit of A/I. and hence I, is modular. O

Proposition 5.9. If I is an ideal and e + I is a unit of A/I, then
e is O-invertible — e€l < A=1.

(The = can be reversed when I = I..)

Proof. Note that I. C I since
(ae+I)=(a+I)e+1)=(a+1),

soa—ae € I.

Suppose that e has ®@-inverse €°, s0 0 =e° ©e =e° + e+ e°e. Thus, e =e°e—e° €[, C I,
proving the first =.

Now, e € I implies ae € I, for any a € A. Then a =a —ae +ae € I, + I C I, proving the
second =-.

Conversely, if A = I, then, in particular, e € I, giving the last <. O

Proposition 5.10. Every proper modular ideal has mazimal extension.

Proof. Suppose that I is a proper ideal and e + I is a unit of A/I, for some e € A. Thuse ¢ I,
by the previous result. By Kuratowski-Zorn, we have a maximal ideal J 2 I with e ¢ J. So
any ideal extension K of J would contain e. Asae —a €I CJ C K, e+ K would again be a
unit of A/K:

(e+K)a+K)=ae+K=a—a+ae+K=a+ K.

The previous result would imply K = A. This show that J is a maximal proper ideal. Why
cant we apply Kuratowski-Zorn directly to proper ideals? O

Proposition 5.11. If A is a normed algebra, I is a proper ideal and e + I is a unit of A/I,
then

inf ||le — j|| > 1.

inf fle —jf| =

Proof. Say we had j € I with |[[e—j|| < 1. Then e — j is ®-invertible, so we can define
f = (e—j)°. This means that

O=foe—j)=f+e—j—fe+fj=0, so e=j—f+fe—fjel+I.—1CI.
But then A = I, contradicting properness. O

Corollary 5.12. FEvery maximal modular ideal in a normed algebra is closed.
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Corollary 5.13. If A is commutative normed algebra and I is a maximal modular ideal, then
A/I =C.

Proof. Since I is closed, B = A/I is a commutative normed algebra with unit e. B has no
non-zero proper ideals: if J were a non-zero proper ideal of B, |JJ would be an ideal of A with
I C UJ # A, a contradiction. Thus, for all ¢ € B\ {0}, Bc = B, i.e., ¢ is invertible. Since
o(c) # 0, we have A € C with Ae — ¢ not invertible, so ¢ = Ae. This show that B~ Ce 2 C. [

Corollary 5.14. Maximal modular ideals in a commutative normed algebra A are precisely the
kernels Ker(¢)) = {a € A: ¢ (a) = 0} of non-zero characters 1) € ® 4.

Theorem 5.15 (Gelfand isomorphism). If A is a commutative C*-algebra, then
[all = llall
for all a € A.

Proof. We already saw that ||al| < |la||. Conversely, first, take a self-adjoint a € A. Then
|la]| = |a|s by Corollary So, we have A\ € o(a) with |A| = |la||. Thus, A~la is not -
invertible. By Proposition I,-1, is a modular ideal. By Proposition I -1, is a proper
modular ideal. By Proposition we can extend Iy-1, to a maximal modular ideal M which
is by Corollary the kernel of a non-zero character 1) € ®4. Since A"'a + M is a unit for
A/M, (A ~ta) = 1. Thus a@(v)) = ¥(a) = X and hence @] > |A| = ||a|.

For general a € A, we have

2 T ks ~12
lall* = [la*all = [la*all = |la"al| = |[a]|.
O

So, we can identify A with {a:a € A} C ¢*°(®,4). The next goal is to turn &4 into a
compact topological space so that A can be identified precisely with the continuous functions
from &4 — C.

Definition 5.16. A topology O(X) on a set X is a family of open subsets of X such that

fcOX), XeOX),
O,N € O(X) = ONN € 0(X),

(Ox)ren CO(X) = UOA € O(X).
A
We call B C O(X) a basis if every open O is a union from B, i.e.,

oX) = {UB,\ : (Ba)xea € B}.

A

We call S C O(X) a subbasis if the finite intersections from S
{NF:FcSisfinite |

form a basis.
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Example 5.17. Every metric defines a canonical topology. Specifically, if d is a metric on X,
we define O C X to be open if for every z € O there is ¢ > 0 such that for every y € X,
d(x,y) < € implies that y € O. This topology has basis B of balls B = {y € X : d(x,y) < ¢},
for x € X and € > 0.

For example, if d is the usual metric on R, given by d(z,y) = |x — y|, then

O(X) = { U (ana bn) : (an)nGNa (bn)nEN - R}-

neN
The ball basis is B = {(a,b) : a,b € R}. A subbasisis S = {(a,0) : a € R}U{(—00,b) : b € R}.
Definition 5.18. A map f: X — Y between topological spaces is continuous if
NeOoY) = fY(N)ecOoX).

This agrees with the metric notion of continuity. Also, it suffices to consider IV is a basis or
a subbasis. A composition of continuous maps is also continuous.

Definition 5.19. A topological space X is compact if every open cover has a finite subcover.
In other words, for any open family (Ox)xea € O(X),

X = UO)‘ — dfinite F* C A such that X = UO,\.
AEA AEF

Lemma 5.20. Continuous image of a compact space X is compact and any closed subset
C C X, that is X \ C is open, is also compact.

Lemma 5.21. For compactness, it suffices to consider covers from a basis B

Proof. We prove it for basis B. Given an open cover C C O(X), let C'={B € B: B C O €C}.
Since B is a basis, C’ still covers X. By assumption, we have By,..., B, covering X. Thus, we
have O; D By,...,0, 2 B, from C covering X. O

Theorem 5.22 (Alexander subbasis theorem). If every cover from a subbasis S has a finite
subcover, then X is compact.

Proof. Suppose that C C O(X) covers X but has no finite subcover. By Kuratowski-Zorn,
we can take maximal C with this property. By assumption C NS can not cover X. Take
z e X\UJICNS) and O € C with x € O. Since S is subbasis, we have finite ¥ C S with
x € (| F C O. By the choice of z, it must be that F NC = (). By the maximality, for S € F, we
have finite Gg C C with X = SUJGgs. Thus,

x=(FulJg=0ulJG, where g=]Gs.

SeF
So {O} UG is a finite cover of X from C, a contradiction. O

Definition 5.23. A subspace is a subset Y of a space X with the subspace topology

OY)={NnY:NeOX).
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Example 5.24. The unit interval [0, 1], as a subspace of R, has the subbasis
S={0,[0,1]} U{(a,1]:0<a<1}U{[0,b) : 0 <b < 1}.
Theorem 5.25. The unit interval [0,1] is a compact topological space.

Proof. By Theorem [5.22] it suffices to consider the subbases. For contradiction, suppose that
C C S has no finite subcover. We need to show that C is not a cover.

e IfCC{(a,1]:0<a<1},then0¢JC,so X #JC.
e IfC C{[0,b):0<b<1},thenl¢|JC,s0X #JC.

Otherwise,
b =sup{b:[0,b) € C} <inf{a: (a,1] €C} =d’.

Then = ¢ |JC, for any x with b’ <z < d/, so again X # |JC. O

Given topological spaces (X))xea, consider their product

Y = H X ={(ya)ren : YA €A (yr € X0)}-
AeA

For each v € A, we have a projection p,: Y — X, onto the coordinate ~:

Py ((Yr)ren) = ¥y
We take the cylinder sets
p5'(0) ={(yy) €Y :y, € O},
for y € A and O € O(X,), as a subbasis for a topology on Y. So, O € O(Y)) if and only if O is
a union of finite cylinder intersections
p5, (O1) NN p 1 (Oy).
This is the coarsest topology making all the projections continuous.

Theorem 5.26 (Tikhonov’s theorem). If (X))aea are all compact spaces, then Y = [ cn X
s also compact.

Proof. By Theorem we only need to consider cylinder sets pgl(O). Let C be a collection
of cylinder sets with no finite subcollection covering Y. We need to show the entirety of C does
not cover Y. For each A € A, let ) = {O € O(X,) :pgl(O) € C}. Not that Cy does not cover
X, — otherwise it would have a finite subcover and the corresponding cylinder sets would cover
Y. So, we may pick yy € X, \ JC), for each A € A. This gives us (yx)aea € Y not covered by
any Cy. Thus C = [Jycp Ch is not a cover of Y. O

Proposition 5.27. Every normed algebra A has compact character space ® 4.
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Proof. Due to linearity, each character ¢» € ®4 on a normed algebra A is determined by its

values on the unit ball A! = {a € A: |la|| <1}. Also, ||v

Since C! is compact, so is Y = [locar C!, by Theorem [5.26

| < 1,509 € &4 maps A to Cl.
Now, ® 4 is the intersection of the

following, for a,b € A and t € (0,1):

Crap ={Y €Y :p(ta+ (1 —1)b) —ty(a) — (1 - t)(b) = 0},
Map = {9 €Y :4p(ab) — ¢(a) — ¢ (b) = O}.

Each set here is closed, hence their intersection ® 4 is also closed. Since ® 4 is a closed subset
of compact Y, ® 4 is also compact. ]

Note that a(y) = (a) is just the projection of ¥ onto “coordinate a”. Thus, Gelfand
trasnfrom a: ®4 — C of a is continuous on ®4. So, we can identify any commutative C*-
algebra A with the C*-subalgebra {a : a € A} of continuous functions from ®4 — C. Does this
C*-subalgebra contain all continuous functions C'(®4)? Not quite — the zero homomorphism
0 € &4 always gets mapped to 0 by any Gelfand transform a. But this is really the only
restriction. We show this by approximating any f € C(®4) with f(0) = 0 by (a,). By
completeness, we have a,, — a € A and hence f =a.

First, we show that f can at least be approximated on pairs of points. This will rely on the
following result, showing that characters are determined already by their scalar multiples.

Proposition 5.28. If ¢, € &4\ {0} and ¢ = \p, for some X\ € C, then ¢ = 1.

Proof. Since 9 # 0, we have a € A with 1(a) # 0. Note A\29(a)? = ¢(a)? = ¢(a?®) = Mp(a?) =
\ip(a)?. Since (a) # 0, this gives A2 = X and hence A = 0 or A = 1. Since ¢ # 0, we must
have A =1, so ¢ = . O

Proposition 5.29. For distinct ¢, € ®4 \ {0} we have a € A with ¢(a) =1 and ¥(a) = 0.
Proof. Take b € A with ¢(b) # 0. By Proposition

P(b)
Y # Wéf)-
So we have ¢ € A with
p(b)y(c) # ¢(b)g(c).

Thus,

P(¥(c)b — ¢(b)c) = d(b)Y(c) — ¥ (b)d(c) # 0
and

(W (c)b — P(b)c) = Y (b)Y (c) — P (b)(c) =0
Taking

(b ()
o(b)yp(c) — 1(b)o(c)

gives ¢(a) = 1 while ¢(a) = 0.
Corollary 5.30. For distinct ¢, € &4\ {0} and o, 5 € C, we have a € A with
¢(a) =a and i(a)=p.
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The next step is to build up from points to the whole space using compactness. This is done
via the Stone-Wierstrass theorem.

Theorem 5.31 (Stone-Weirstrass theorem). Suppose that A C C(X,R) is closed under V and
A, defined by
(aVb)(x)
(a A b)(x)

ax(a(x), b(x)),
in(a(x),b(x)).

=m
=m
If X is compact and f € C(X,R), then

Vpre X l(7G) ~aW)| 1) ~a@) =0 = inf f —a] =0,
Proof. For every ¢ > 0 and y,z € X, we have a,, € A with

f(y) —ay:(y)] <e and |f(2) —ay:(2)] <e.

In other words, both y and z are in the open subsets

Uy ={x € X : f(x) — ay:(z) < e},

Vy: ={z € X 1 ay.(z) — f(z) < e}
For a fixed y, compactness gives finite G C X with X = |J,cq Uy.. Taking ay = \/,cqay. € A
gives f(r) —ay(xz) < ¢, for all z € X. Also ay(z) — f(z) < ¢, for all z € V, = (), Vi
Again compactness gives finite ' C X with X = UyeF Vy. Taking a = /\yEF a, € A gives
a(z) — f(z) < e, for all z € X. But still f(z) —a(x) < ¢, for all x € X, as this holds for each
ay. Thus, || f —al| < e. Since € > 0 was arbitrary, infoea || f — al| = 0. O

Theorem 5.32. If A C C(X,R) is a real Banach algebra, A is closed under \V and A.

Proof. We claim /a € A, for any a € Ay = C(X,Ry). To see this, note that /r on R4 can be
approximated uniformely by polynomials with zero constant term on [0, s], for any s > 0:

e There is an analytic branch of \/a + 37 defined on C\ (—R).
e Thus, the power series centered at s converges uniformely on [, 2s — d].
e So, we have a polynomial p with |p(r) — /r| < ¢, for r € [4,2s — 4.

e Then ¢(r) = p(r+3§)—p(d) is a polynomial with zero constant term such that |q(r) —/r| <
g’, for all r € [0,2s — 20] D [0, s].

Taking s = ||al|, g(a) € A and ||¢(a) — v/a|]| < . Since € was arbitrary and A is complete and
closed, v/a € A.
Thus, for all a € A, |a] = Va? € A and hence, for all a,b € A,

1 1
a\/bzi(a—i-b—i-‘a—b‘)eA and a/\bzi(a‘f‘b_’a_b’)eA'

Theorem 5.33. If A is a commutative C*-algebra, then

(G:ac A} =Cy(da).
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Proof. Note that {a@:a=a*} C C(®4,R) is a real Banach algebra. By Theorem [5.32] it is
closed under VvV and A. By Corollary for any f € C(®4,R) and ¢, € &4\ {0}, we have
a € A with a(¢) = f(¢) and a(vp) = f(¢). Since f is real, we can ensure that a = a*. By
Theorem as long as f(0) = 0, we have (a,) € A with a, = a}, and ||a, — f|| — 0. By
completeness, a, — a, so f = a.

Since every f € C(®4) can be written as f = g + ih, for g,h € C(®4,R), it follows that
f=b+ic=a,fora=b+1ice A. dJ

Thus, all commutative C*-algebras are isomorphic to Cy(X), for some compact space X and
some fixed point 0 € X.

Proposition 5.34. If A is unital, then the zero character 0 is isolated (that is open) in ® 4.
Proof. Note that (1) =1, for 1p € &4 \ {0} while 0(1) = 0. Thus,

(o} =1" ({A €C: |\ < ;})

is open. O

This means that ® 4\ {0} is also compact and A is isomorphic to C(®4). In other words, all
unital commutative C*-algebras are isomorphic to those of the form C(X), for some compact
space X.

Even in non-commutative C*-algebras, the Gelfand representation gives a powerful “contin-
uous functional calculus” on normal elements. First, ote that any b € A generates a C*-algebra
B given by

B = cl({p(b) : p is a *-polynomial with no constant term}).

Equivalently, B is the smallest C*-subalgebra of A containing b. If b is normal, i.e., b*b = bb*,
then p(b)g(b) = q(b)p(b), for all *-polynomials p and g, and hence B is commutative. Thus, by
Gelfand, we can identify B with Cy(®p). For any f € Cy(C), not that fob e Co(Pp). Thus,

we have some f(b) € B with f(b) = fob, i.e., for all € ®p,

In fact, we really only need f to be defined on o(b).
Recall the definition of the spectrum of an element b of an algebra A:

oa(b)\ {0} = {X € C\ {0} : kA"'b is not ®-invertible in A}.

The ambient algebra A is crucial. If b is in a subalgebra B of A and A~'b has no ®-inverse in
A, then it centrainly can not have ®-inverse in B either, so

oa(b)\ {0} € op(b) \ {0}.

In general (even Banach) algebras, this inclusion can be strict. However, for C*-(sub)algebras,
we always have equality. For simplicity, we restrict ourselves to normal elements.

Theorem 5.35. If B is a C*-subalgebra of A and b € B is normal, then
oa(b) \ {0} = op(b) \ {0}.
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Proof. Note it suffices to take B as the C*-subalgebra generated by B. Let f, € [0,1]C be
“bump functions” at 1 with bumps of radius 1/n:

fu(la) =0V (1 —=n|l—al).
Given \ € op(b) \ {0}, let a, = fn(A71b) so |lan|| = 1 and
Han — an)\_le — 0.

Thus
an OX =210+ a, — ap A0 — A7l

If A='b had a @-inverse ¢ in A, we would have a contradiction:

an:anQ)\_leC—))\_lb@c:O.

Recall that for any function f in algebra Cy(X),

ran(f) = o(f) U{0}.
Indeed, for A ¢ o(f) U {0}, the G-inverse of A~ f is given by

If b € A is normal and B =~ Cy(®p) is the C*-subalgebra it generates,

o~

ran(b) = op(b) U{0} = 04(b) U {0},
ie., b maps ®p onto the spectrum b of A plus 0. Thus, f(b) only depends on the values of f on
o(b).
In particular, if b € A is normal and o(b) C Ry, then v/b is defined. Moreover, vb = /b
and b = VbV = \/I;*\/B*, SO

o) CRy = beA, ={a"a:acA}
The goal is to show that the converse also holds
Proposition 5.36. For normal b € A,
o(b) CRy <= ||AN1—0| < A,
for some/all X > ||b]|.

Proof. Let B ~ C(®p\{0}) be the C*-subalgebra of A" generated by b and 1. The ran A\l = {A\}
and ranb = o(b) and hence

1AL —bf| = Hﬁ —ZH — A — min(o(b)).
Thus, ||A1 —b|| < X if and only if min(o(b)) > 0 if and only if o(b) C B. O

29



Corollary 5.37. For normal a,b € A, if o(a),o(b) C Ry, then o(a+b) C R;.

Proof. Follows from the previous result since ||a + b|| < ||la|| + ||b]| and

[lall + 161 = (@ + )|} < [[llallt = all + [[l[b[1 = bl] < [lal| + [[b]l

Theorem 5.38. For any C*-algebra A, AL = {b€ A :b is normal and o(b) C R }.

Proof. We already saw that b € A if b is normal and o(b) C R;. Conversely, say b € A, i.e.,
b = a*a, for some a € A. Then

b* = (a*a)* =a*a™ =a*a=0

so b is normal and o(b) C R.
Let by = fy(b) and b_ = f_(b), where fi, f— € RE are definded by

fr(r)=0Vvr and f_(r)=0V —r
Now,
(av/b-) av/b- = Vb-a'ay/bo = Vb (by —b-)V/bo = —b2.

Let a\/bi = z + iy for self-adjoint x,y € A. Then

av/b_(ay/b0)* = 2+ y?) — (ay/b ) ar/b.
So by the previous result on sums, o(a+/b—(a\/b_)*) C R and thus

o(=b%) = o((ar/b_)*a\/b_) CR, NR_ = {0}.
Thus, b_ =0, i.e., b = by and hence o(b) = o(b4) C R;. O

For a C*-algebra A, we have the following

Ay ={b"b:be A}
= {v?:b=0b"}
= {b:b*b=bb* and o (b) C Ry}

In particular, A4 form a subsemigroup of A, i.e., AL + A4 C A,

5.2 GNS-construction

The next goal is to represent non-commutative C*-algebras on Hilber spaces, i.e., as C*-
subalgebras of bounded linear operators B(H ).
We use Ay to define a relation < on Ag, = {b€ A:b=>b"} by

a<b <= b—acA;.

Equivalently, a < b means b € A4 + a. Since A, is a (additive) subsemigroup of the (additive)
semigroup Ag,, < is transitive. Since 0 € A, < is also reflexive. Since AL N —A; = {0}, < is

also symmetric. Thus < is a partial order on Ag,.
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Proposition 5.39. For any a,b,c € A, if a <b, then c*ac < c*bc.

Proof. If a < b, then b — a = d*d, for some d € A. Then ¢*bc — c*ac = ¢*(b — a)c = ¢*d*dc =
(cd)*cd € A O

Proposition 5.40. For any a,b € A,
a*b+b*a < a*a+ b*b,
(a+b)*(a+b) <2(a*a+b*D).

Proof. For the first inequality, 0 < (a — b)*(a — b) = a*a — a*b — b*a + b*b. For the second,
(a+b)*(a+b) <a*a+a*b+b*a+ b*b < 2(a*a + b*D). O

Definition 5.41. We call C C A, a coneif 0c C=C+C =R, C=0C2. Wecall [ C Aa
left ideal if 0 e I =1+1=CI = Al.

Proposition 5.42. If C C A, is a cone, then I = {b€ A:b*b € C} is a left ideal. Moreover
I is closed if C is closed, since b — b*b is continuous.

Proof. If a,b € I, then a + b € I since
(a+b)"(a+b) <2(a*a+b"b) e R (C+C)CC.

If a € I and X\ € C, then \a € I since (\a)*(\a) = Ma*a € R,C CC. Ifa € Aand b € I,
then (ab)*ab = b*a*ab < ||la*a||b*b € Ry C C C. Also 00 =0 € C so 0 € I and hence [ is a left
ideal. O

Definition 5.43. We call ¢ € C4 positive if ¢(A,) C R,
Example 5.44. Any character ) € ®4 is positive.
Proposition 5.45. Every positive linear ¢ is automatically continuous.

Proof. Recall that continuous is equivalent to bounded. For all a € A, a = b+ ci, for b, c € Ag,
with [|b]], ||| < |la||. For all a € Aga, a = ay —a—, for ay,a_ € Ay with |ay], ||a—|| < |la-
Thus it suffices for ¢ to be bounded on A;. If not, we would have (a,) C Ay with [ja,| < 5+
and ¢(a,) = 1. Then a = > a, € Ay and ¢(a) > > ¢(a,) — o0, a contradiction. O

Any positive linear ¢ defines a positive sesquilinear form ¢(b*a). Thus the Cauchy-Schwarz
inequality gives
6(b*a)|* < H(b*b)¢(a*a).
Let
I={becA:¢p(b*b) =0} ={be A:Vac A ¢(ab) = 0}.

Then I is a left ideal. Cosider the quotient vector space A/I. Let v, = a+ I so A/l =
{vg : a € A}. Define (-,-) on A/I by

(Vg, vp) = P(b%a).

This is a well-defined inner product on A/I. Thus, we can complete A/I to obtain a Hilbert
space H. Every a € A determines a map 7(a) on A/I by

m(a)(vp) = Vgp.
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This is well-defined because I is a left ideal. We immediately see that 7(a) is linear. Also,
(@) (00)[I* = (vap, vas) = S(b"a"ab) < [lal|*é(b*b) = [|al|*[[vp||*.

Thus 7(a) is bounded and extends to a bounded linear map on H. Also

(m(a)(ve), ve) = (Vab, ve) = P(cab) = (v, vasc) = (v, w(a™)(ve))-

This shows that m(a*) = 7(a)*, which is its adjoint operator on H. So 7 represents A on H,
i.e., we can identify A with w(A) C B(H).

So, from positive linear ¢, we defined a representation 7: A — B(H). It remains to show that
such positive linear ¢ exists. In the commutative case, we have lots of characters. Indeed, by
Gelfand, commutative C*-algebras have the form Cy(X). Then every = € X gives a character
f = f(z) on Cyp(X). Thus, even for non-commutative A, we have lots of characters on the
commutative C*-subalgebra generated by any normal a € A. The issue is that these may not
extend to characters on A itself. However, they will extend to positive linear ¢ on A. Proving
this relies on Hahn-Banach extension theorem.

Theorem 5.46 (Hahn-Banach). If B is a subspace of a real normed space A, then any R-valued
linear ¢ on B with ||¢|| = 1 has a linear extension v on A with ||| = 1.

Proof. By Kuratowski-Zorn, we have a maximal linear extension ¢ with |[¢|| = ||¢|| on a sub-
space C' containing B. We claim that C = A.
If not, take a € A\ C and note that, for any b,c € C,

P(0) = () = b —c) <[lb—c| = |b—a+a—c| <[b—a] +[la—c.
Take A € R with

sup(¢(b) — [|b—al|) < A < inf ([la — ] +9(c)).
beC ceC

Define linear §# on Ra + C 2 C by 0(Ba + ¢) = BX + ¢(c). Then [|f]| = 1, contradicting
maximality. O

Any C-linear ¢ € C4 gives R-linear ¢ € R4 by ¢(v) = R(¢0(v)). Note that ||¢]| = ||¢]:
e Certainly, ||¢|| < ||¢| since |R(\)] < |A|, for all X € C.
e Conversely,
1 =) ) = ¢((v)"Mv) < [Igll[e(v) " o] = [|gll[(v) " ol.
Thus [¢(v)| < [|[[[v], for all v with ¥ (v) # 0, so [|[¢]| < [|8].

Also ¢ (v) = ¢(v) —igp(iv) since A = R(X) —iR(iA), for all A € C. Conversely, given any R-linear
¢ € R4, we can define

P(v) = o(v) —id(iv).

Such 9 is C-linear and ¢(v) = R(p(v)). In other word,s we have a norm-preserving correspon-
dence between real linear functionals on A and complex linear functionals on A.

Corollary 5.47. Any complex linear functional ¢ on a subspace B of a complex normed space
A has a linear extension with the same norm on the entirety of A.
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Corollary 5.48. A linear functional ¢ on a unital C*-algebra A is positive if and only if
o(1) = [|o]].

Proof. (<= ¢(1) = ||¢||. We first show that ¢ is self-adjoint, i.e., p(Asa) C R. To see this,
take a € Agy, n € Z and let b = nl — ia. Then

161 = [16°b]| = [|(n1 + ia)(nl — ia)|| = ||n*1 + a®|| < n® + [|a]*.
Let ¢(a) = r +is. We need to show that s = 0. To see this note
[6(B)* = [n6(1) —ig(a)* = [nllgl| — ir + s = (nl|g|| + 5)* +r°
= n?[10|* + 2ns||gl| + 5* + > < B2 [IBl* < [|B]*(n® + [lal|®).
Thus, 2ns|¢|| + s2 4 r2 < ||¢|*||la]|?, for all n € Z, and hence s = 0.

To see that ¢ is positive, take a € Ay with ||a|| = 1. By Gelfand, we know that |1 —a|| < 1.
Thus,

6]l = ¢(a) = ¢(1) — ¢(a) = ¢(1 —a) < 4],
so ¢(a) > 0. So if ¢(1) = ||¢||, then ¢ is indeed positive.

( = ) Conversely, assume ¢ is positive and take any a € A with ||a|]| = 1. Then |la*a|| =
la* =1, so a*a < 1 by Gelfand. As ¢ is positive, ¢(a*a) < ¢(1) so Cauchy-Schwartz gives

[$(a) = [¢(1a) < $(1)¢(a*a) < $(1)°.
Since a was arbitrary, this shows that ||¢|| = ¢(1). O

Definition 5.49. A state on a C*-algebra is a positive linear functional ¢ with ||¢| = 1.
Theorem 5.50. For any a € Ay we have a state ¢ on A with ¢(a) = ||a]|.

Proof. Consider the C*-subalgebra generated by a and 1 in the unitisation A. By Gelfand, this
is isomorphic to C'(X), for some compact X. Evaluating at some x € X gives ||al|. So we have
a character ¢ on this C*-subalgebra with ¢(a) = ||la||. Note ¢(1) =1 = ||¢||. By Hahn-Banach,
¢ extends to A without changing the norm. By the previous result, ¢ is therefore positive and
hence a state. O

Corollary 5.51. For any a € A, we have a representation w: A — B(H) with ||w(a)|| = | a|.

Proof. We may assume A is unital (otherwise unitize then restrict = to A). Take a state ¢ with
¢(a*a) = ||la*a| = ||a|*. Let 7 be the GNS representation coming from ¢. Then

Iw(a)|* = (m(a)vr, m(a)vr) = (va, va) = d(a*a) = [la]|*.

To obtain a faithful representation we combine all these 7, for a € A, i.e., define
7(0) = [[ ma(®) € [[ B(H,) = B(H),
acA a€A

where

H=@H, = {<wa> e TT Ha: 3wl < oo}.

acA acA acA
Then 7(a) = w(b) if and only if a = b, i.e., we can identify A with m(A) C B(H).
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