
C*-algebras∗

Peter Zeman

Contents

1 Introduction 2

2 Semigroups, monoids, groups 2
2.1 Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Vector spaces, algebras 6
3.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 The spectrum 14
4.1 Unital algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 General spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Representations 19
5.1 Gelfand representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 GNS-construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

∗Based on the lectures by Tristan Bice.

1



1 Introduction

C*-algebra is a set together with operations: sum, product, scalar product, involution, norm.
Simple examples include the complex numbers C, matrix algebra Mn(C), algebra of continuous
functions C([0, 1],C). So, C*-algebras can be non-commutative or infinite dimensional.

C*-algebras provide an abstract way of investigating seemingly different objects like matrices
and continuous functions. These two examples give us two different viewpoints:

C*-algebras ≈ infinite dimensional matrices,

C*-algebras ≈ non-commutative topology.

By adding extra structure, one can arrive to other objects, e.g., quantum groups, non-commutative
geometry, von Neumann algebras, etc.

2 Semigroups, monoids, groups

2.1 Semigroups

Definition 2.1. A semigroup (S, ·) is a set S together with a binary operation · on S, which is
associative, i.e., for all a, b, c ∈ S,

a · (b · c) = (a · b) · c.

We will also write just abc = a(bc) = (ab)c.

Semigroups are the most basic kind of algebraic structure. They are the building blocks of
other structures like C*-algebras.

Example 2.2. • (C,+) and (C, ·) are semigroups.

• (C,�), where a� b = a2b2 is not a semigroup.

• (XX , ◦) is a semigroup. Here, XX = {f : X → X} and ◦ is the composition of functions
(f ◦ g)(x) = f(g(x)).

Definition 2.3. A semigroup S is commutative or abelian if, for all a, b ∈ S,

ab = ba.

Example 2.4. • (C,+) and (C, ·) are commutative.

• (Mn(C),+) is commutative, but (Mn(C), ·) is not.

• (XX , ◦) is not commutative if |X| ≥ 2.

Definition 2.5. An action of a semigroup S on a set X is a product · : S ×X → X such that

s · (t · x) = (st) · x.

Example 2.6. • If S is a semigroup, then S acts on X = S × S by

s · (a, b) = (sa, sb).
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• (XX , ◦) acts on X by
f · x = f(x).

Definition 2.7. A subsemigroup of semigroup S is a subset P ⊆ S such that PP ⊆ P , i.e.,

p ∈ P and q ∈ P =⇒ pq ∈ P.

In other words, P is a subsemigroup of S if and only if P is a semigroup itself under the same
semigroup operation.

Example 2.8. • N,Z,Q,R are subsemigroups of C with respect to both · and +.

• −N is a subsemigroup of C under +, but not under multiplication.

Definition 2.9. • A binary relation ≺ on a set S is

– transitive if a ≺ b ≺ c =⇒ a ≺ c,
– reflexive if a ≺ a for every a ∈ S,

– antisymmetric if a ≺ b ≺ a =⇒ a = b.

• A transitive relation is an order.

• A transitive reflexive relation is a preorder.

• An antisymmetric preorder is a partial order.

• A partial order ≺ is total if all pairs a, b ∈ S are comparable, i.e.,

a ≺ b or b ≺ a.

Example 2.10. • ⊆ is a partial order on all sets.

• ≤ is a total order on R.

Given a semigroup S and a subsemigroup P ⊆ S, define

a ≺ b ⇐⇒ a ∈ Pb.

Lemma 2.11. The relation ≺ on S is transitive.

Proof. If a ≺ b ≺ c, then we have p, q ∈ P with a = pb and b = qc. So,

a = pb = p(qc) = (pq)c.

As P is a subsemigroup, pq ∈ P . Thus, a ∈ Pc and hence a ≺ c.

Example 2.12. • R+ = {r ∈ R : r ≥ 0} form an additive subsemigroup of R. The
associated ≺ is

a ≺ b ⇐⇒ a ∈ R+ + b ⇐⇒ a− b ∈ R+ ⇐⇒ a− b ≥ 0 ⇐⇒ a ≥ b.

So ≺ = ≥ is the opposite of the usual order on R+.

• Consider the multiplication on S = P = (0, 1). Then

a ≺ b ⇐⇒ a ∈ Pb ⇐⇒ a

b
∈ P ⇐⇒ a

b
< 1 ⇐⇒ a < b.

So, ≺ = < is the usual strict order on (0, 1).
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Definition 2.13. A map φ : S → T between semigroups is a homomorphism if φ(ab) =
φ(a)φ(b).

Example 2.14. • The modulus φ : C → R+, defined by φ(a) = |a| is a multiplicative
homomorphism since |ab| = |a||b|.

• The modulus is not an additive homomorphism.

• The determinant det : Mn(C)→ C is a multiplicative homomorphism since detAdetB =
detAB.

Definition 2.15. A *-semigroup is a semigroup together with an operation a 7→ a∗ such that

(ab)∗ = b∗a∗, (antihomomorphism)

a∗∗ = a. (involution)

Example 2.16. • Any commutative semigroup is a *-semigroup with a∗ = a.

• Mn(C) is a *-semigroup.

Definition 2.17. We call an element of a *-semigroup S

• normal if aa∗ = a∗a,

• self-adjoint if a = a∗,

• positive if a = bb∗, for some b ∈ S.

Lemma 2.18. Every positive element is self-adjoint. Every self-adjoin element is normal.

Proof. Positive implies self-adjoint:

a = bb∗ =⇒ a∗ = (bb∗)∗ = (b∗)∗b∗ = bb∗ = a.

Self-adjoint implies normal:
a = a∗ =⇒ aa∗ = aa = a∗a.

Lemma 2.19. An element a is positive if and only if a = b∗b, for some b ∈ S.

Proof. If a = bb∗ = b∗∗b∗, then a = c∗c for c = b∗.

Example 2.20. Consider (C, ·) with a∗ = a (complex conjugation).

• Since multiplication is commutative, every element in C is normal.

• The self-adjoint elements in C are exactly R.

• The positive elements in C are exactly R+.

If we consider (C,+) instead, the normal and self-adjoint elements are the same as for (C, ·).
However, the positive elements are R.

Definition 2.21. Let S be a semigroup.

• We call an element 0 ∈ S absorbing if, for all a ∈ S, 0a = 0 = a0.

• We call an element 1 ∈ S identity if, for all a ∈ S, 1a = a = a1.

Note that absorbing elements and identities are unique.
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2.2 Monoids

Definition 2.22. A monoid is a semigroup M with an identity 1 ∈ M . We call b ∈ M an
inverse of a ∈M if

ba = 1 = ab.

In this case we say a is invertible and often write b = a−1. Note that inverses are unique and
(a−1)−1 = a. The invertible elements form a submonoid of M .

Example 2.23. • (C,+, 0) is a monoid.

• (C \ {0}, ·, 1) is a monoid.

• (Mn(C), ·, I), where I is the identity matrix, is a monoid.

Definition 2.24. A monoid action is a semigroup action · : M × X → X such that for all
x ∈ X,

1 · x = x.

Note that if a ∈M has an inverse a−1 ∈M , then ax = y =⇒ a−1y = x.

2.3 Groups

Definition 2.25. A group is a monoid G where every g ∈ G has an inverse g−1 ∈ G.

Example 2.26. Since (gh)−1 = h−1g−1 and (g−1)−1 = g, every G is a *-semigroup with
g∗ = g−1. We determine the normal, self-adjoint and positive elemnets in G

• Normal elements are the whole G since g−1g = 1 = gg−1.

• Self-adjoin elements are elemnets of order 2 since g−1 = g ⇐⇒ g2 = 1.

• Positive is only the identity element since 1 = gg−1.

Example 2.27. GLn(C) = {A ∈Mn(C) : det(A) 6= 0} is a group and SLn(C) = {A ∈Mn(C) :
det(A) = 1} is its subgroup.

Definition 2.28. We call H ⊆ G a subgroup of a group G if

1 ∈ H, HH ⊆ H, and H−1 ⊆ H.

Proposition 2.29. A subset H ⊆ G of a group G is a subgroup if and only if HH−1 ⊆ H 6= ∅.
Proof. If H is a subgroup, then HH−1 ⊆ HH ⊆ H and 1 ∈ H, so S 6= ∅.

Conversly, assume HH−1 ⊆ S 6= ∅. Taking any h ∈ H, we have 1 = hh−1 ∈ HH−1 ⊆ H.
Thus, H−1 = 1H−1 ⊆ HH−1 ⊆ H. So, H = (H−1)−1 ⊆ H−1 and hence HH ⊆ HH−1 ⊆
H.

Theorem 2.30. If G is a group then H ⊆ G is a subgroup if and only if H(G\H) ⊆ G\H 6= G.

Proof. Suppose that H is a subgroup, h ∈ H and g ∈ G \ H. Then hg ∈ H would imply
g ∈ h−1H ⊆ H−1H ⊆ HH ⊆ H. This contradicts g ∈ G \ H. So hg /∈ H and hence
H(G \H) ⊆ G \H.

Conversely, assume that H(G \H) ⊆ G \H 6= G. If 1 /∈ H, then taking any h ∈ H, we have
h = h1 ∈ H(G \H) ⊆ G \H, contradicting h ∈ H. Thus 1 ∈ H.

If h ∈ H and h−1 /∈ H, then 1 = hh−1 ∈ H(G \H) ⊆ G \H. This cotradicts 1 ∈ H. So,
H−1 ⊆ H.

Now, if h, k ∈ H and hk /∈ H, then k = h−1hk ∈ H−1(G \ H) ⊆ H(G \ H) ⊆ G \ H,
contradicting k ∈ H. Thus, HH ⊆ H and hence H is indeed a subgroup of G.
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3 Vector spaces, algebras

3.1 Vector spaces

Definition 3.1. A (complex) vector space is a commutative group (V,+, 0) together with a
scalar product (α, v) 7→ αv : C× V → V such that

α(v + w) = αv + αw,

(α+ β)v = αv + βv,

α(βv) = (αβ)v,

1v = v.

In other words, v 7→ αv is a homomorphism (V,+) → (V,+), for each α ∈ C, α 7→ αv is a
homomorphism (C,+)→ (V,+), for each v ∈ V , and (α, v) 7→ αv is a monoid action of (C, ·, 1)
on V .

Example 3.2. C, C× C, Mn(C), C(X,C) = {continuous X → C}.

Definition 3.3. We call W ⊆ V a subspace of a vector space V if

W 6= ∅, CW ⊆W, and W +W ⊆W.

Subspace is also a subgroup since

{0} = 0W ⊆ CW ⊆W and −W = (−1)W ⊆ CW ⊆W.

Lemma 3.4. W is a subspace if and only if ∅ 6= W = W +W = CW .

Proof. W = W + W = CW implies W + W ⊆ W and CW ⊆ W . Conversely, assume that
W + W ⊆ W and CW ⊆ W hold. Then in fact = holds since W = 1W ⊆ CW and W =
0 +W ⊆W +W .

Lemma 3.5. If F is a family of subspaces, then
⋂
F is also a subspace.

Proof. Take v, w ∈
⋂
F . This means that v, w ∈ W , for every W ∈ F . As W is a subspace,

v + w ∈ W . As W was arbitrary, v + w ∈
⋂
F . Thus,

⋂
F +

⋂
F ⊆

⋂
F . Likewise, C

⋂
F ⊆⋂

F .

Definition 3.6. The span of any S ⊆ V is the smallest subspace containing S, i.e.,

span(S) =
⋂
{W : S ⊆W and W is a subspace of V }.

Equivalently, span(S) is generated by S, i.e.,

span(S) =

{
n∑
k=1

αksk : α1, . . . , αn ∈ C and s1, . . . , sn ∈ S

}
.

Note that the exception is S = ∅, in which case span(∅) = {0}.

Definition 3.7. The dimension of V is the smallest cardinality of a spanning subset, i.e.,

dim(V ) = min{|S| : span(S) = V }.
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Example 3.8. • dim({0}) = 0, dim(C) = 1, dim(C× C) = 2, dim(M2(C)) = 4.

• Some vector spaces have infinite dimesnion, e.g., the space c00(C) of sequences of complex
numbers that are eventually zero,

c00(C) = {(α1, α2, . . . ) : ∃n ∈ N ∀k ≥ n (αk = 0)}.

Note that c00(C) =
⋃
n∈N Vn, where Vn ≈ Cn is the subspace

Vn = {(α1, α2, . . . ) : ∀k ≥ n (αk = 0)}.

Since (Vn) is strictly incerasing, with respect to ⊆, c00(C) has infinite dimension.

Definition 3.9. We call S ⊆ V linearly independent if S has no proper spanning subset, i.e.,

R ( S =⇒ span(R) ( span(S).

Equivalently, S ⊆ V is linearly independent if and only if whenever we have finite distinct
s1, . . . , sn ∈ S and finite α1, . . . , αn ∈ C,

α1s1 + · · ·αnsn = 0 =⇒ α1 = · · · = αn = 0.

Definition 3.10. A basis B ⊆ V is linearly independent spanning set, i.e. V = span(B).

Theorem 3.11 (Kuratowski-Zorn Lemma). If (P,≤) is a partially ordered set such that every
totally ordered subset T ⊆ P has an upper bound p ∈ P, then P has a maximal element.

Proposition 3.12. Every vector space has a basis.

Proof. Let P = {S ⊆ V : S is linearly independent}. Any totally ordered T ⊆ P has an upper
bound. Specifically, S =

⋃
T is linearly independent. If not, then we would have s ∈ S with

s ∈ span(S \ {s}). But then s ∈ span(F ), for some finite F ⊆ S \ {s}. For each f ∈ F ∪ {s},
we have some T ∈ T with f ∈ T . Since T is totally ordered and F is finite, these T ’s have a
maximum, i.e., we have some T ∈ T with F ∪ {s} ⊆ T . But then s ∈ span(F ) ⊆ span(T \ {s}),
contradicting T ∈ T.

By Theorem 3.11, there is a maximal linearly idependent subset S ⊆ V . By maximality,
if v ∈ V \ S, then S ∪ {v} is not linearly independent, so v ∈ span(S). Since v was arbitrary,
V \ S ⊆ span(S). Certainly, S ⊆ span(S), so, V = S ∪ (V \ S) = span(S).

Proposition 3.13. If B ⊆ V is a basis of a vector space V , then dim(V ) = |B|.

Example 3.14. • dim(c00(C)) = |N|, c00(C) has standard basis (en)n∈N, where en =
(0, . . . , 0, 1, 0, . . . ) with 1 on the nth position.

• (en)n∈N is not a basis of c0(C) = {(α1, α2, . . . ) : αn → 0} since (1, 1/2, 1/3, . . . ) /∈
span(en)n∈N. In fact, dim(c0(C)) = |R| > |N|.

Definition 3.15. Let V and W be vector spaces. We call T : V → W linear if T is a vector
space homomorphism, i.e.,

T (v + w) = T (v) + T (w),

T (αv) = αT (v).
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Let L(V ) =
{
T ∈ V V : T is linear

}
, where dim(V ) = n. If we fix a basis of V , then there is a

matrix representation MT of T . So T 7→MT is a homomorphism from (L(V ), ◦)→ (Mn(C), ·).
Since we can also define TM ∈ L(V ), for any M ∈ Mn(C), T 7→ MT is an isomorphism.
Changing the fixed basis, changes the isomorphism.

Definition 3.16. An inner product is a map 〈·, ·〉 : V × V → C such that

〈v + w, x〉 = 〈v, x〉+ 〈w, x〉,
〈αv,w〉 = α〈v, x〉,
〈v, w〉 = 〈w, v〉,
v 6= 0⇒ 〈v, v〉 > 0.

The map v 7→ 〈v, x〉 is linear, for x ∈ V , and 〈·, ·〉 is conjugate-symmetric. The map v 7→ 〈x, v〉
is conjugate-linear.

Example 3.17. The standard inner product on Cn is 〈·, ·〉 : Cn × Cn → C defined by

〈v, w〉 =

n∑
i=1

viwi.

If M ∈Mn(C), then
〈v,Mw〉 = 〈M∗v, w〉,

where M∗ is the conjugate transpose of M . This is the * operation on matrices. Generally, if
dim(V ) <∞ and 〈·, ·〉 is an inner product on V , then every T ∈ L(V ) has unique adjoint, i.e.,
T ∗ ∈ L(V ) such that

〈v, Tw〉 = 〈T ∗v, w〉.

Definition 3.18. A *-vector space is a vector space V together with a map ∗ : V → V such
that

(v + w)∗ = v∗ + w∗,

(αv)∗ = αv∗.

In other words, v 7→ v∗ is conjugate-linear. Note that (V,+,∗ ) is a *-semigroup since (v+w)∗ =
v∗ + w∗ = w∗ + v∗.

Example 3.19. C3 with (α1, α2, α3)∗ = (α1, α2, α3) is a *-vector space.

3.2 Algebras

Definition 3.20. A *-algebra is a *-vector space (A,+,∗ ) and a *-semigroup (A, ·,∗ ) such that

(a+ b)c = ac+ bc and (αb)c = α(bc).

In other words, a 7→ ac is linear, for each c ∈ A.

Lemma 3.21. The map a 7→ ca is linear.

8



Proof.

c(a+ b) = (c(a+ b))∗∗ = ((a+ b)∗c∗)∗ = ((a∗ + b∗)c∗)∗

= (a∗c∗ + b∗c∗)∗ = ((ca)∗ + (cb)∗)∗ = ca+ cb.

c(αa) = (c(αa))∗∗ = ((αa)∗c∗)∗ = (αa∗c∗)∗ = (α(ca)∗)∗ = αca.

Example 3.22. • Mn(C), or equivalently L(V ), for dim(V ) <∞, is a *-algebra.

• C(X,C), C(X,Mn(C)) are *-algebras.

Definition 3.23. A metric on a set X is a function d : X2 → [0,∞) such that

d(x, y) = d(y, x), (symmetry)

d(x, y) = 0 ⇐⇒ x = y, (coincidence)

d(x, y) ≤ d(x, z) + d(z, y). (triangle inequality)

Definition 3.24. A metric d on a vector space V is compatible if

d(v + x,w + x) = d(v, w), (translation invariant)

d(αv, αw) = |α|d(v, w). (homogeneous)

Definition 3.25. A function ‖·‖ : V → [0,∞) is a norm if

‖v‖ = 0 =⇒ v = 0, (definite)

‖v + w‖ ≤ ‖v‖+ ‖w‖, (subadditive)

‖αv‖ = |α|‖v‖. (homogeneous)

Lemma 3.26. There is a norm ‖·‖ on V if and only if there is a compatible metric d on V .

Proof. Let d be a compatible metric on V . Define ‖v‖ = d(v, 0). The translation invariance
gives

d(v, w) = d(v + (−w), w + (−w)) = d(v − w, 0) = ‖v − w‖.

Further,

0 = ‖v‖ = d(v, 0) ⇐⇒ v = 0,

‖αv‖ = d(0, αv) = d(α0, αv) = |α|d(0, v) = |α|‖v‖,
‖v + w‖ = d(0, v + w) ≤ d(0, v) + d(v, v + w) = d(0, v) + d(0, w) = ‖v‖+ ‖w‖.

Thus, ‖v‖ = d(v, 0) is a norm.
Conversely, if ‖·‖ is a norm, then d(v, w) = ‖v − w‖ is compatible.

0 = d(v, w) = ‖v − w‖ ⇐⇒ v − w = 0 ⇐⇒ v = w,

d(v, w) = ‖v − w‖ = | − 1|‖v − w‖ = ‖w − v‖ = d(w, v),

d(v, w) = ‖v − w‖ = ‖v − x+ x− w‖ ≤ ‖v − x‖+ ‖x+ w‖ = d(v, x) + d(x,w).

Since d(v, 0) = ‖v − 0‖ = ‖v‖, these constructions are mutually inverse.
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Definition 3.27. A normed space is a vector space together with a norm ‖·‖.

Definition 3.28. A normed *-algebra is a *-algebra A together with a norm ‖·‖ satisfying

‖ab‖ ≤ ‖a‖‖b‖, (submultiplicative)

‖a∗‖ = ‖a‖. (*-invariant)

3.3 C*-algebras

Definition 3.29. We call a sequence (vn)n∈N ⊆ V in a metric space V Cauchy if

∀ε > 0 ∃k ∈ N ∀j ≥ k (d(vj , vk) < ε),

or, equivalently,
∀ε > 0 ∃M ∈ N ∀j, k ≥M (d(vj , vk) < ε).

V is complete if every Cauchy (vn) ⊆ V converges to some w ∈ V , i.e.,

∀ε > 0 ∃k ∈ N ∀j ≥ k (d(vj , w) < ε).

Example 3.30. R and C are complete with respect to d(v, w) = |v − w|.

Definition 3.31. A Banach space is a complete normed space. A Banach *-algebra is a
complete normed *-algebra. A C*-algebra is a Banach *-algebra such that

‖a∗a‖ = ‖a∗‖‖a‖. (*-multiplicative)

Observation 3.32. *-invariant and *-multiplicative hold if and only if

‖a∗a‖ = ‖a‖2. (C*)

Example 3.33. For any set X and f ∈ CX , define ‖f‖ = supx∈X |f(x)| and f∗ = f . Then

`∞(X) =
{
f ∈ CX : ‖f‖ <∞

}
is a commutative C*-algebra. Each f ∈ `∞(X) can be veiwed as a linear operator on

`2(X) =
{
g ∈ CX : 〈g, g〉 <∞

}
,

the inner product spece where 〈g, h〉 =
∑

x∈X g(x)h(x), namely

Tfg = fg.

Moreover, 〈fg, h〉 =
〈
g, fh

〉
= 〈g, f∗h〉 and ‖f‖ = sup‖g‖2=1 ‖fg‖2. We need to consider more

general linear operators to obtain non-commutative C*-algebras.

Example 3.34. If X is a metric space, then

Cb(X) = {f ∈ `∞(X) : f is continuous}

is a C*-subalgebra of `∞(X).

Proposition 3.35. In a normed space, f(x) = ‖x‖ defines a continuous function.
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Proof. ‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖ + ‖y‖. So, ‖x‖ − ‖y‖ ≤ ‖x− y‖. Likewise, ‖y‖ − ‖x‖ ≤
‖y − x‖ = ‖x− y‖. So, |‖x‖−‖y‖| ≤ ‖x− y‖. Taking y = xn, we see that ‖x− xn‖ → 0 implies
|‖x‖ − ‖xn‖| → 0.

Definition 3.36. For any linear map T ∈W V between normed spaces, we define the operator
norm of T as

‖T‖ = sup
‖x‖≤1

‖T (x)‖ = sup
x 6=0

‖T (x)‖
‖x‖

.

This defines a norm.

Proposition 3.37. T is continuous if and only if T is bounded, i.e., ‖T‖ <∞.

Proof. If T is bounded and xn → x, then T (xn)→ T (x) since

‖T (xn)− T (x)‖ = ‖T (xn − x)‖ ≤ ‖T‖‖xn − x‖ → 0.

Conversely, if T is not bounded, we have (xn) ⊆ V 1 with ‖T (xn)‖ → ∞. Then

yn =
1

‖T (xn)‖
xn → 0

while

T (yn) =

∥∥∥∥T ( 1

‖T (xn)‖
xn

)∥∥∥∥ =
‖T (xn)‖
‖T (xn)‖

= 1.

Thus T (yn) 6→ 0 = T (0) and hence T is not continuous.

We denote the bounded linear operators on a normed space V by

B(V ) = {T ∈ L : ‖T‖ <∞} =
{
T ∈ V V : T is linear and ‖T‖ <∞

}
.

Theorem 3.38. If V is a Banach space the B(V ) is a Banach algebra.

Proof. B(V ) is a normed algebra, we need to show completeness. Let (Tn) ⊆ B(V ) be Cauchy,
i.e., ‖Tm − Tn‖ → 0 as m,n → ∞. Then for each v ∈ V , we have ‖Tm(v)− Tn(v)‖ ≤
‖Tm − Tn‖‖v‖ → 0. So, the sequence (Tn(v)) is Cauchy. Since V is complete, we can de-
fine T (v) = limTn(v). Linearity of T follows from the linearity of each Tn. By Proposition 3.35,
norm is continuous, and ‖Tv‖ ≤ supn ‖Tn(v)‖ ≤ supn ‖Tn‖‖v‖. Thus ‖T‖ ≤ supn ‖Tn‖ < ∞
since (Tn) is Cauchy. So, T ∈ B(V ).

Definition 3.39. A sesquilinear form on a vector space V is a map 〈·, ·〉 : V × V → C that is
linear in the first coordinate and conjugate-linear in the second, i.e.,

〈v + w, x〉 = 〈v, x〉+ 〈w, x〉,
〈v, x+ y〉 = 〈v, x〉+ 〈v, y〉,
〈λv, x〉 = λ〈v, x〉 =

〈
v, λx

〉
.

A sesquilinear form is real/positive/strictly positive if for all x ∈ V \{0}, 〈x, x〉 ∈ R/R+/R+\{0}.
Every sesquilinear form is conjugate-symmetric: 〈x, y〉 = 〈y, x〉. Inner product is strictly positive
sesquiliner form. For a positive sesquilinear form, we define ‖x‖ =

√
〈x, x〉.
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Theorem 3.40 (Caychy-Schwartz Inequality). For any positive sesquilinear form,

|〈v, w〉| ≤ ‖v‖‖w‖.

Proof. Since 〈·, ·〉 is positive, 〈z, z〉 ≥ 0 for z = 〈w,w〉v − 〈v, w〉w. It sufficies to exapnd this
using other inner product properties.

Corollary 3.41. In any inner product space, ‖x‖ =
√
〈x, x〉 defines a norm.

Proof. ‖·‖ is homogeneous since 〈·, ·〉 is sesquilinear. ‖·‖ is definite since 〈·, ·〉 is positive definite.
‖·‖ is subadditive by Theorem 3.40.

Lemma 3.42. Inner product spaces are exactly normed spaces satisfying

2‖v‖2 + 2‖w‖2 = ‖v + w‖2 + ‖v − w‖2. (parallelogram law)

Definition 3.43. A Hilbert space is a complete inner product space, i.e., complete with respect
to

d(v, w) = ‖v − w‖ =
√
〈v − w, v − w〉.

Example 3.44. `2(X) =
{
g ∈ CX : 〈g, g〉 <∞

}
is a Hilbert space where 〈g, h〉 =

∑
x∈X g(x)h(x).

By Theorem 3.40, this is well defined inner product:∑
x∈X
|g(x)h(x)| =

∑
x∈X
|g(x)||h(x)| ≤

√∑
x∈X
|g(x)|2

√∑
x∈X
|h(x)|2 <∞.

Definition 3.45. We call a subset C of a vector space V convex if

λ ∈ [0, 1] and x, y ∈ C =⇒ λx+ (1− λ)y ∈ C.

We call a subset C of a metric space V closed if

C ⊇ xn → y =⇒ y ∈ C.

Theorem 3.46. If H is a Hilbert space, then for any v ∈ H and closed convex C ⊆ H, we can
find a point w ∈ C minimizing the distance to v, i.e.,

‖v − w‖ = inf
x∈C
‖v − x‖.

Proof. Take a sequence (xn) ⊆ C with ‖v − xn‖ → d = infx∈C ‖v − x‖. So for ε > 0, we have
m ∈ N such that ‖v − xn‖ ≤ d+ ε, for n ≥ m. Then

‖xn − xm‖2 = ‖xn − v + v − xn‖2

= 2‖xn − v‖2 + 2‖v − xm‖2 − ‖(xn − v)− (v − xm)‖2 (parallelogram law)

= 2‖v − xn‖2 + 2‖v − xm‖2 − 4

∥∥∥∥1

2
(xn + xm)− v

∥∥∥∥2

≤ 2(d+ ε) + 2(d+ ε)− 4d = 4ε.

Thus (xn) is Cauchy and hence xn → w, for some w ∈ H. Since C is closed, we have w ∈ C.
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Definition 3.47. For a Hilbert space H and S ⊆ H, let

S⊥ = {y ∈ H : ∀s ∈ S (〈s, y〉 = 0)}

be the orthogonal complement of S in H.

Corollary 3.48. If V is a closed subspace of a Hilbert space H, then H = V + V ⊥.

Proof. By Theorem 3.46, for any x ∈ H, there is w ∈ V with ‖x− w‖ = infv∈V ‖x− v‖. Thus,
for any v ∈ V , we have

〈x− w, x− w〉 ≤ 〈x− (w + v), x− (w + v)〉,
〈y, y〉 ≤ 〈y − v, y − v〉, (substituting y = x− w)

〈y, y〉 ≤ 〈y, y〉 − 〈y, v〉 − 〈v, y〉+ 〈v, v〉.
2R(〈y, v〉) ≤ 〈v, v〉.

Replacing v with tv for t ∈ R or t ∈ iR shows 〈y, v〉 = 0. Thus, x = x − w + w = y + w ∈
V ⊥ + V .

Theorem 3.49 (Riesz Representation). If H is a Hilbert space, then every continuous linear
φ ∈ CH is defined by

φ(x) = 〈x, v〉, for a unique v ∈ H..

Proof. Since φ is continuous, V = {x ∈ H : φ(x) = 0} is closed. Thus H = V + V ⊥. Note that
V ⊥ has dimension at most 1. If V ⊥ = {0}, then V = H and we can take v = 0. Otherwise,
take w ∈ V ⊥ with ‖w‖ = 1 and let v = φ(w)w. Then

〈w, v〉 =
〈
w, φ(w)w

〉
= φ(w)〈w,w〉 = φ(w).

Also, for any x ∈ V ,
〈x, v〉 = φ(w)〈x,w〉 = 0 = φ(x).

Thus, φ and 〈·, v〉 agree on V and V ⊥ and hence on H.
For uniqueness, suppose that 〈x, v〉 = 〈x,w〉, for all x ∈ H. Then 〈x, v − w〉 = 0, so

〈v − w, v − w〉 = 0, and hence v − w = 0.

Theorem 3.50. For every bounded linear operator T on a Hilbert space H, there is another
adjoint bounded linear operator T ∗ on H satisfying

〈Tv,w〉 = 〈v, T ∗w〉.

Proof. From Theorem 3.40 and boundedness of T , we get |〈Tv,w〉| ≤ ‖T‖‖v‖‖w‖. So φw(v) =
〈Tv,w〉 is bounded. By Theorem 3.49, we have unique u ∈ H such that 〈Tv,w〉 = φw(v) =
〈v, u〉. The define the mapping T ∗ by T ∗(w) = u. The mapping T ∗ defined in such a way is
linear and ‖T ∗‖ ≤ ‖T‖ since

‖T ∗w‖ = sup
v∈H1

|〈v, T ∗w〉| = sup
v∈H1

|〈Tv,w〉| ≤ ‖T‖‖w‖.

It is easy to check that T ∗∗ = T and ‖T ∗T‖ = ‖T‖2. We get the following

Corollary 3.51. B(H) = {T ∈ L(H) : ‖T‖ <∞} is a C*-algebra.

13



4 The spectrum

4.1 Unital algebras

Definition 4.1. The spectrum of an element b of a unital algebra A is given by

σ(b) = {λ ∈ C : λ1− b is not invertible}.

Example 4.2. • If A = CX with pointwise operations, then for any f ∈ A,

σ(f) = ran(f) = {f(x) : x ∈ X}.

To see this, let f(x) = λ. Then for all g ∈ A,

((λ1− f)g)(x) = (λ− f(x))g(x) = 0.

Thus (λ1− f)g 6= 1 so λ1− f is not invertible, i.e., λ ∈ σ(f). Conversely, if λ /∈ ran(f),
then for all x ∈ X, we can define

g(x) =
1

λ− f(x)
.

Since (λ1− f)g = 1, g is the inverse of (λ1− f), i.e., λ 6∈ σ(f).

• For general algebras, we can think of σ(a) as an “abstract range”.

Definition 4.3. If V is a vector space, the point-spectrum of any T ∈ L(V ) is given by

σp(T ) = {λ ∈ C : Ker(λ1− T ) 6= {0}}.

So, λ ∈ σp(T ) means that there is a non-zero w ∈ Ker(λ1−T ), i.e., T (w) = λw. In other words,
w is an eigenvector of T with eigenvalue λ. Then (S(λ1− T ))(w) = 0, for all S ∈ L(V ), so

σp(T ) = {λ ∈ C : λ is an eigenvalue of T} ⊆ σ(T ).

Observation 4.4. σp(T ) = σ(T ), for all T ∈ L(V ), if and only if dim(V ) <∞.

Definition 4.5. The spectral radius of an element b of a unital algebra A is given by

|b|σ = sup{|λ| : λ ∈ σ(b)}.

Example 4.6. • If f ∈ A = CX , then |f |σ = supx∈X |f(x)| = ‖f‖.
• If T ∈ L(V ), where dim(V ) <∞, then

|T |σ = max{|λ| : Tw = λw}.

• If

T =

(
0 1
0 0

)
,

then |T |σ = 0 < 1 = ‖T‖.

14



• If Tw = λw, for w 6= 0, then for any n ∈ N, |λ| ≤ ‖Tn‖
1
n since

|λ|n‖w‖ = ‖λnw‖ = ‖Tnw‖ ≤ ‖Tn‖‖w‖.

Thus, if dim(V ) <∞, then

|T |σ ≤ inf
n∈N
‖Tn‖

1
n .

Proposition 4.7. For any b in a normed algebra A (or even a “normed semigroup”)

‖bn‖
1
n → inf

n∈N
‖bn‖

1
n as n→∞.

Proof. Given m ∈ N, write n = dmm+ rm, for 0 ≤ rm < m. So,

‖bn‖
1
n ≤

∥∥∥(bm)dmbrm
∥∥∥ 1

n ≤ ‖bm‖
dm
n ‖b‖

rm
n =

(
‖bm‖

1
m

) dmm
n ‖b‖

rm
n .

As n→∞,
dmm

n
=
n− rm
n

<
n−m
n

→ 1 and
rm
n
<
m

n
→ 0.

Thus, (
‖bm‖

1
m

) dmm
n ‖b‖

rm
n → ‖bm‖

1
m .

So for any ε > 0, we eventually have

‖bn‖
1
n ≤ ‖bm‖

1
m + ε.

Since m was arbitrary, this shows that the infimum is a limit.

4.2 General spectrum

To extend σ to non-unital algebra A, we consider � on A given by

a� b = a+ b− ab.

Observation 4.8. The operation � is associative with identity 0: (A,�) is a monoid.

If A is unital, then 1− a� b = 1− a− b+ ab = (1− a)(1− b). So,

a 7→ 1− a

is a semigroup isomorphism (A,�) → (A, ·). So 1 − b is invertible in (A, ·) if and only if b is
invertible in (A,�). When λ 6= 0, λ1− b = λ−1(1− λ−1b), so this means

σ(b) \ {0} =
{
λ : λ−1b is not �-invertible

}
.

This makes sense even for non-unital A.

Definition 4.9. The non-zero spectrum of an element b of any algebra A is given by

σ(b) \ {0} =
{
λ : λ−1b is not �-invertible

}
.

We declare 0 ∈ σ(b) if and only if b is invertibles with respect to the usual product ·. In
particular, if A is not unital, then 0 ∈ σ(b), for all b ∈ A.
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Example 4.10. If A = c0(N) =
{
f ∈ CN : f(n)→ 0

}
, with pointwise operations, then

σ(f) \ {0} = ran(f) \ {0}.

To see this, let f(x) = λ 6= 0. Then for all g ∈ A,

(λ−1f � g)(x) = λ−1f(x) + g(x)− λ−1f(x)g(x) = 1 + g(x)− g(x) = 1.

Thus, (λ−1f � g)(x) 6= 0 so λ−1f is not �-invertible, i.e., λ ∈ σ(f). Conversely if λ /∈ ran(f),
then λ−1f has an �-inverse g defined by

g(x) =
f(x)

f(x)− λ
.

We will denote the � inverse of b by b◦.

Theorem 4.11. In any algebra A, if s = −
∑∞

n=1(b◦ � a)n is defined, then

a� s = b.

Proof. Note that
s = −b◦ � a+ (b◦ � a)s

and
b = a− b◦ � a+ b(b◦ � a).

So,

a� s = a+ s− as
= a+ s+ (b− a)s− bs
= a− b◦ � a+ (b◦ � a)s+ (b− a)s+ b(b◦ � a)− b(b◦ � a)s

= a− b◦ � a+ b(b◦ � a) + (b◦ � a+ b− a− b(b◦ � a))s

= a− b◦ � a+ b(b◦ � a) + (b− a+ b◦ � a− b(b◦ � a))

= b.

Corollary 4.12. If A is a Banach algebra then, for any b ∈ A,

inf
n∈N
‖bn‖

1
n < 1 =⇒ b is �-invertible.

Proof. Take γ with infb∈N ‖bn‖
1
n < γ < 1. Since “inf = lim” here, for large j, we have∥∥∥∥∥∥

k∑
n=j

bn

∥∥∥∥∥∥ ≤
k∑
n=j

‖bn‖ ≤
k∑
n=j

γn ≤ γj

1− γ
→ 0 as j →∞.

So, since A is complete, s = −
∑∞

n=1 b
n = −

∑∞
n=1(0◦ � b)n is defined. By Theorem 4.11,

b� s = 0. Likewise s� b = 0, so s = b◦.
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Corollary 4.13. If A is a Banach algebra, then, for any b ∈ A,

|b|σ ≤ inf
n∈N
‖bn‖

1
n .

Proof. For any λ > infn ‖bn‖
1
n ,

inf
n

∥∥(λ−1b)n
∥∥ 1

n = inf
n

∥∥λ−nbn∥∥ 1
n = inf

n
|λ|−1‖bn‖

1
n < 1.

Thus λ−1b has a �-inverse by Corollary 4.12. So λ /∈ σ(b), by the definition of spectrum.

Corollary 4.14. In any normed algebra A, b 7→ b◦ is continuous whenever it is defined.

Proof. By taking the completion, we may assume A is a Banach algebra. If ‖b‖ < 1, then

‖b◦‖ =

∥∥∥∥∥−
∞∑
n=1

bn

∥∥∥∥∥ ≤
∞∑
n=1

‖b‖n ≤ ‖b‖
1− ‖b‖

.

Thus, if ‖b‖ → 0, then also ‖b◦‖ → 0, i.e., b 7→ b◦ is continuous at 0.
Now, fix �-invertible b ∈ A. If a→ b, then b◦ � a→ b◦ � b→ 0. So,

sa = −
∞∑
n=1

(b◦ � a)n → 0.

From a� sa = b, we get a◦ = sa � b◦ → b◦, as a→ b. Thus, a 7→ a◦ is also continuous at b.

Lemma 4.15. If b ∈ A, for a Banach algebra A, then σ(b) is compact.

Theorem 4.16. If A is a (complex) normed algebra, then, for any b ∈ A,

|b|σ ≥ inf
n∈N
‖bn‖

1
n .

Proof. For contradiction, assume that |b|σ < infn ‖bn‖
1
n = r. Then the �-inverse (λ−1b)◦ is

defined whenever |λ| ≥ r. So, λ 7→ (λ−1b)◦ is uniformly continuous on

{λ ∈ C : r ≤ |λ| ≤ r + 1}.

Take any such λ.
Let α1, . . . , αn be the nth roots of 1 in C. Let λk = αkλ, for 1 ≤ k ≤ n. By the factor

theorem,

1− (λ−1x)n =

n∏
k=1

(1− λ−1
k x).

In the polynomial algebra C[x], this is equivalent to

(λ−1x)n = λ−1
1 x� λ−1

2 x� · · · � λ−1
n x.

Substituting b for x, we get the follwoing equation in the algebra A:

(λ−1b)n = λ−1
1 b� λ−1

2 b� · · · � λ−1
n b.
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Since each λ−1
k b is �-invertible, so is (λ−1b)n. Let

ck = −
n−1∑
j=1

λ−jk b−j = −λ−1
k b− λ−2

k b2 − · · · − λ1−n
k b1−n.

Then
(λ−1b)n = λ−1

k b� ck,

so,
(λ−1
k b)◦ = ck � ((λ−1b)n)◦.

If αn = 1, then
n∑
k=1

αk =
α− αn+1

1− α
=
α− α
1− α

= 0, so
n∑
k=1

ck = 0.

Thus,
n∑
k=1

(λ−1
k b)◦ =

n∑
k=1

(ck � ((λ−1b)n)◦) = n((λ−1b)n)◦,

so

((λ−1b)n)◦ =
1

n

n∑
k=1

(λ−1
k b)◦.

Now, ∥∥((λ−1b)n)◦ − ((r−1b)n)◦
∥∥ ≤ 1

n

n∑
k=1

∥∥(λ−1
k b)◦ − (r−1

k b)◦
∥∥.

By uniform continuity, for any ε > 0, we can pick λ > r with∥∥((αλ)−1b)◦ − (αr−1b)◦
∥∥ ≤ ε, for all α with |α| = 1.

Then ∥∥((λ−1b)n)◦ − ((r−1b)n)◦
∥∥ ≤ ε.

But, ∥∥(λ−1b)n
∥∥ ≤ (|λ−1|‖bn‖

1
n )n → (λ−1r)n → 0, so ((λ−1b)n)◦ → 0.

Thus, ∥∥((r−1b)n)◦
∥∥→ 0, so (r−1b)n → 0.

But this contraticts ∥∥(r−1b)n
∥∥ = r−n‖bn‖ ≥ ‖bn‖−1‖bn‖ = 1.

Corollary 4.17. If A is a Banach algebra, then for any b ∈ A,

|b|σ = inf
n
‖bn‖

1
n .

Note that |b|σ only depends on the algebra structure of A and infn ‖bn‖
1
n only depends on

the norm and product structure.
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Corollary 4.18. If A is a C*-algebra, then for any self-adjoint b ∈ A,

|b|σ = ‖b‖.

Proof. If b = b∗, then
∥∥b2∥∥ = ‖b∗b‖ = ‖b‖2. By induction,

∥∥b2n∥∥ = ‖b‖2
n

. Thus,

‖b‖ =
∥∥b2n∥∥ 1

2n → |b|σ,

by Corollary 4.17.

Corollary 4.19. If A and B are C*-algebras and π : A → B is a *-algebra homomorphism,
then

‖π‖ ≤ 1.

Proof. If λ−1a is �-invertible, then so is π(λ−1a) = λ−1π(a). Thus, σ(π(a)) ⊆ σ(a) and hence
|π(a)|σ ≤ |a|σ. If a is self-adjoint, then so is π(a) and hence ‖π(a)‖ ≤ ‖a‖, by Corollary 4.18.
For general a ∈ A, ‖π(a)‖ =

√
‖π(a∗a)‖ ≤

√
‖a∗a‖ = ‖a‖.

Corollary 4.20. C*-algebra norms are unqiue.

Proof. If ‖·‖ and ‖·‖′ are C*-algebra norms on a *-algebra A, taking π = id and applying
Corollary 4.19, we get ‖a‖ ≤ ‖a‖′ ≤ ‖a‖, for all a ∈ A.

5 Representations

Spectral theory will be applied to obtain representations. Recall that, for any set X, we have
commutative C*-algebra

`∞(X) =
{
f ∈ CX : ‖f‖ <∞

}
,

where ‖f‖ = supx∈X |f(x)|. `∞(X) also has many C*-subalgebras, e.g., any topology on X
determines C*-subalgebra of continuous bounded functions Cb(X). Given x ∈ X, we have a
further (potentially non-unital) C*-subalgebra

A =
{
f ∈ Cb(X) : f(x) = 0

}
.

It turns out that all commutative C*-algebras can be represented as C*-algebra of continuous
bounded functions on a topological space, vanishing at a particular point in the non-unital case.

Basic idea. Given a C*-algebra A, we can consider characters on A:

ΦA =
{
ψ ∈ CA : ψ is a (*-)algebra homomorphism

}
.

Every b ∈ A determines a function b̂ : ΦA → C, defined by

b̂(ψ) = ψ(b).

Then b 7→ b̂ is a homomorphism A→ `∞(ΦA):

• âb = âb̂ because âb(ψ) = ψ(ab) = ψ(a)ψ(b) = â(ψ)̂b(ψ) = (âb̂)(ψ).

• Similarly, â+ b = â+ b̂, b̂∗ = b̂∗, and λ̂b = λb̂.

• ‖b̂‖ ≤ b̂ (≤ ∞) because |̂b(ψ)| = |ψ(b)| ≤ ‖ψ‖‖b‖ ≤ ‖b‖.

However, b 7→ b̂ may not be an isomorphism. For example, if A = M2(C), then ΦA = {0}, so
b̂ = 0, for all b ∈ A. The goal is to show that ‖b̂‖ = ‖b‖, for all b ∈ A, when A is commutative.
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5.1 Gelfand representation

It will be convenient to add a unit to any non-unital algebra A. Algebraically this is simple: let
A′ = A× C with

(a, λ)∗ = (a∗, λ),

λ(a, γ) = (λa, λγ),

(a, λ) + (b, γ) = (a+ b, λ+ γ),

(a, λ)(b, γ) = (ab+ γa+ λb, λγ).

Then A′ is a *-algebra with *-subalgebra A × {0} isomorphic to A. But, A′ also has a unit
(0, 1).

Defining a norm to make A′ a C*-algebra is more tricky. One could define *-algebra norm
by ‖(a, λ)‖ = ‖a‖ + |λ|, but this norm might not satisfy the C*-condition, namely it might
happen that ‖(a, λ)∗(a, λ)‖ 6= ‖(a, λ)‖2.

Theorem 5.1. A′ is a C*-algebra under the norm

‖(a, λ)‖ = sup
‖b‖≤1

‖ab+ λb‖.

Proof. Note that this is the operator norm, considering (a, λ) ∈ B(A), defined by

(a, λ)(b) = ab+ λb.

This makes sense also algebraically with how the operations on A were extended above and also
‖(a, 0)‖ = ‖a‖. Thus, the norm is an algebra norm. Also, 1 dimensional extensions of Banach
spaces are always complete. So we only need to check the C* norm condition ‖x‖2 ≤ ‖x∗x‖.

For any (a, λ) ∈ A′,

‖(a, λ)‖2 = sup
‖b‖≤1

‖(a, λ)(b)‖2 = sup
‖b‖≤1

‖ab+ λb‖2

= sup
‖b‖≤1

∥∥(b∗a∗ + λb∗)(ab+ λb)
∥∥

= sup
‖b‖≤1

∥∥b∗[(a∗, λ) ◦ (a, λ)](b)
∥∥

= sup
‖b‖≤1

∥∥[(a∗, λ) ◦ (a, λ)](b)
∥∥

=
∥∥(a∗, λ)(a, λ)

∥∥
= ‖(a, λ)∗(a, λ)‖

Thus, the C* norm condition holds.

Proposition 5.2. Every character on a Banach algebra is automatically continuous.

Proof. Consider a character, i.e., an algebra homomorphism φ : A → C. For any a ∈ A,
{φ(a)} = σ(φ(a)) ⊆ σ(a). Thus |φ(a)| ≤ |a|σ ≤ ‖a‖, i.e., ‖φ‖ ≤ 1.

Proposition 5.3. If φ is a character on A ⊆ A′ = A+ C1, then

φ′(a+ λ1) = φ(a) + λ

defines a character φ′ on A′ extending φ on A.
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Theorem 5.4. Characters take real values on self-adjoint elements of C*-algebras.

Proof. Let φ be a character on A. Extend φ to A′ = A+ C1. Given a ∈ A and t ∈ R, define

eita =

∞∑
n=0

1

n!
(ita)n.

Thanks to completeness, this is always well-defined. If a = a∗, then

(eita)∗ =

∞∑
n=0

1

n!
(−ita)n = e−ita.

Thus, ∥∥eita∥∥2
=
∥∥(eita)∗eita

∥∥ =
∥∥e−itaeita∥∥ =

∥∥e0∥∥ = ‖1‖ = 1.

So,
1 ≥ ‖φ‖ ≥ |φ(eita)| = |eitφ(a)| = e−tr,

where φ(a) = s + ri. If r 6= 0, then for large positive or negative t this would be impossible.
Thus, φ(a) = s ∈ R.

Corollary 5.5. Characters on C*-algebras are automatically *-homomorphisms.

Proof. For any a ∈ A, b = 1
2(a∗ + a) and c = 1

2 i(a
∗ − a) are sefl-adjoint. Moreover, b + ic =

1
2(a∗ + a)− 1

2(a∗ − a) = a. Using Theorem 5.4, if φ is a character, then

φ(a∗) = φ(b− ic) = φ(b)− iφ(c) = φ(b) + iφ(c) = φ(b+ ic) = φ(a).

Definition 5.6. An ideal in an algebra is a subspace I such that, for all b ∈ A,

bI ∪ Ib ⊆ I.

Given an ideal I, we can form the quotient algebra A/I. The elements of A/I are subsets
of the form b + I, for b ∈ A. We define (a + I)(b + I) = ab + I. This is well-defined since, for
all j, k ∈ I,

(a+ j)(b+ k) + I = ab+ ak + jb+ jk + I = ab+ I.

Likewise, define (a+ i) + (b+ I) = a+ b+ I and λ(a+ I) = λa+ I. If A is a normed algebra
and I is a closed ideal, then defining

‖a+ I‖ = inf
j∈I
‖a+ j‖

turns A/I into a normed algebra as well.

Definition 5.7. An ideal I in an algebra A is modular if A/I is unital.

Proposition 5.8. If A is a commutative algebra, then any e ∈ A defines a modular ideal

Ie = {a− ae : a ∈ A}.
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Proof. For any b ∈ Ie and c ∈ A, we have a ∈ A with b = a− ae, so

bc = cb = c(a− ae) = (ca) + (ca)e ∈ Ie.

Likewise, we can verify Ie to be a subspace and hence an ideal. Moreover,

(e+ Ie)(c+ Ie) = ec+ Ie = c− c+ ec+ Ie = c+ Ie.

Thus, e+ Ie is a unit of A/Ie and hence Ie is modular.

Proposition 5.9. If I is an ideal and e+ I is a unit of A/I, then

e is �-invertible =⇒ e ∈ I ⇐⇒ A = I.

(The =⇒ can be reversed when I = Ie.)

Proof. Note that Ie ⊆ I since

(ae+ I) = (a+ I)(e+ I) = (a+ I),

so a− ae ∈ I.
Suppose that e has �-inverse e◦, so 0 = e◦ � e = e◦ + e+ e◦e. Thus, e = e◦e− e◦ ∈ Ie ⊆ I,

proving the first ⇒.
Now, e ∈ I implies ae ∈ I, for any a ∈ A. Then a = a − ae + ae ∈ Ie + I ⊆ I, proving the

second ⇒.
Conversely, if A = I, then, in particular, e ∈ I, giving the last ⇐.

Proposition 5.10. Every proper modular ideal has maximal extension.

Proof. Suppose that I is a proper ideal and e+ I is a unit of A/I, for some e ∈ A. Thus e /∈ I,
by the previous result. By Kuratowski-Zorn, we have a maximal ideal J ⊇ I with e /∈ J . So
any ideal extension K of J would contain e. As ae− a ∈ I ⊆ J ⊆ K, e + K would again be a
unit of A/K:

(e+K)(a+K) = ae+K = a− a+ ae+K = a+K.

The previous result would imply K = A. This show that J is a maximal proper ideal. Why
cant we apply Kuratowski-Zorn directly to proper ideals?

Proposition 5.11. If A is a normed algebra, I is a proper ideal and e + I is a unit of A/I,
then

inf
j∈I
‖e− j‖ ≥ 1.

Proof. Say we had j ∈ I with ‖e− j‖ < 1. Then e − j is �-invertible, so we can define
f = (e− j)◦. This means that

0 = f � (e− j) = f + e− j − fe+ fj = 0, so e = j − f + fe− fj ∈ I + Ie − I ⊆ I.

But then A = I, contradicting properness.

Corollary 5.12. Every maximal modular ideal in a normed algebra is closed.
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Corollary 5.13. If A is commutative normed algebra and I is a maximal modular ideal, then

A/I ∼= C.

Proof. Since I is closed, B = A/I is a commutative normed algebra with unit e. B has no
non-zero proper ideals: if J were a non-zero proper ideal of B,

⋃
J would be an ideal of A with

I (
⋃
J 6= A, a contradiction. Thus, for all c ∈ B \ {0}, Bc = B, i.e., c is invertible. Since

σ(c) 6= ∅, we have λ ∈ C with λe− c not invertible, so c = λe. This show that B ∼= Ce ∼= C.

Corollary 5.14. Maximal modular ideals in a commutative normed algebra A are precisely the
kernels Ker(ψ) = {a ∈ A : ψ(a) = 0} of non-zero characters ψ ∈ ΦA.

Theorem 5.15 (Gelfand isomorphism). If A is a commutative C*-algebra, then

‖â‖ = ‖a‖,

for all a ∈ A.

Proof. We already saw that ‖â‖ ≤ ‖a‖. Conversely, first, take a self-adjoint a ∈ A. Then
‖a‖ = |a|σ by Corollary 4.18. So, we have λ ∈ σ(a) with |λ| = ‖a‖. Thus, λ−1a is not �-
invertible. By Proposition 5.8, Iλ−1a is a modular ideal. By Proposition 5.9, Iλ−1a is a proper
modular ideal. By Proposition 5.10, we can extend Iλ−1a to a maximal modular ideal M which
is by Corollary 5.14 the kernel of a non-zero character ψ ∈ ΦA. Since λ−1a + M is a unit for
A/M , ψ(λ−1a) = 1. Thus â(ψ) = ψ(a) = λ and hence ‖â‖ ≥ |λ| = ‖a‖.

For general a ∈ A, we have

‖a‖2 = ‖a∗a‖ = ‖â∗a‖ = ‖â∗â‖ = ‖â‖2.

So, we can identify A with {â : a ∈ A} ⊆ `∞(ΦA). The next goal is to turn ΦA into a
compact topological space so that A can be identified precisely with the continuous functions
from ΦA → C.

Definition 5.16. A topology O(X) on a set X is a family of open subsets of X such that

∅ ∈ O(X), X ∈ O(X),

O,N ∈ O(X) =⇒ O ∩N ∈ O(X),

(Oλ)λ∈Λ ⊆ O(X) =⇒
⋃
λ

Oλ ∈ O(X).

We call B ⊆ O(X) a basis if every open O is a union from B, i.e.,

O(X) =

{⋃
λ

Bλ : (Bλ)λ∈Λ ⊆ B

}
.

We call S ⊆ O(X) a subbasis if the finite intersections from S{⋂
F : F ⊆ S is finite

}
form a basis.
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Example 5.17. Every metric defines a canonical topology. Specifically, if d is a metric on X,
we define O ⊆ X to be open if for every x ∈ O there is ε > 0 such that for every y ∈ X,
d(x, y) < ε implies that y ∈ O. This topology has basis B of balls Bε

x = {y ∈ X : d(x, y) < ε},
for x ∈ X and ε > 0.

For example, if d is the usual metric on R, given by d(x, y) = |x− y|, then

O(X) =

{⋃
n∈N

(an, bn) : (an)n∈N, (bn)n∈N ⊆ R

}
.

The ball basis is B = {(a, b) : a, b ∈ R}. A subbasis is S = {(a,∞) : a ∈ R}∪{(−∞, b) : b ∈ R}.

Definition 5.18. A map f : X → Y between topological spaces is continuous if

N ∈ O(Y ) =⇒ f−1(N) ∈ O(X).

This agrees with the metric notion of continuity. Also, it suffices to consider N is a basis or
a subbasis. A composition of continuous maps is also continuous.

Definition 5.19. A topological space X is compact if every open cover has a finite subcover.
In other words, for any open family (Oλ)λ∈Λ ⊆ O(X),

X =
⋃
λ∈Λ

Oλ =⇒ ∃ finite F ⊆ Λ such that X =
⋃
λ∈F

Oλ.

Lemma 5.20. Continuous image of a compact space X is compact and any closed subset
C ⊆ X, that is X \ C is open, is also compact.

Lemma 5.21. For compactness, it suffices to consider covers from a basis B

Proof. We prove it for basis B. Given an open cover C ⊆ O(X), let C′ = {B ∈ B : B ⊆ O ∈ C}.
Since B is a basis, C′ still covers X. By assumption, we have B1, . . . , Bn covering X. Thus, we
have O1 ⊇ B1, . . . , On ⊇ Bn from C covering X.

Theorem 5.22 (Alexander subbasis theorem). If every cover from a subbasis S has a finite
subcover, then X is compact.

Proof. Suppose that C ⊆ O(X) covers X but has no finite subcover. By Kuratowski-Zorn,
we can take maximal C with this property. By assumption C ∩ S can not cover X. Take
x ∈ X \

⋃
(C ∩ S) and O ∈ C with x ∈ O. Since S is subbasis, we have finite F ⊆ S with

x ∈
⋂
F ⊆ O. By the choice of x, it must be that F ∩C = ∅. By the maximality, for S ∈ F , we

have finite GS ⊆ C with X = S ∪
⋃
GS . Thus,

X =
⋂
F ∪

⋃
G = O ∪

⋃
G, where G =

⋃
S∈F
GS .

So {O} ∪ G is a finite cover of X from C, a contradiction.

Definition 5.23. A subspace is a subset Y of a space X with the subspace topology

O(Y ) = {N ∩ Y : N ∈ O(X)}.
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Example 5.24. The unit interval [0, 1], as a subspace of R, has the subbasis

S = {∅, [0, 1]} ∪ {(a, 1] : 0 < a < 1} ∪ {[0, b) : 0 < b < 1}.

Theorem 5.25. The unit interval [0, 1] is a compact topological space.

Proof. By Theorem 5.22, it suffices to consider the subbases. For contradiction, suppose that
C ⊆ S has no finite subcover. We need to show that C is not a cover.

• If C ⊆ {(a, 1] : 0 < a < 1}, then 0 /∈
⋃
C, so X 6=

⋃
C.

• If C ⊆ {[0, b) : 0 < b < 1}, then 1 /∈
⋃
C, so X 6=

⋃
C.

Otherwise,
b′ = sup{b : [0, b) ∈ C} ≤ inf{a : (a, 1] ∈ C} = a′.

Then x /∈
⋃
C, for any x with b′ ≤ x ≤ a′, so again X 6=

⋃
C.

Given topological spaces (Xλ)λ∈Λ, consider their product

Y =
∏
λ∈Λ

Xλ = {(yλ)λ∈Λ : ∀λ ∈ Λ (yλ ∈ Xλ)}.

For each γ ∈ Λ, we have a projection pγ : Y → Xγ onto the coordinate γ:

pγ((yλ)λ∈Λ) = yγ .

We take the cylinder sets
p−1
γ (O) = {(yγ) ∈ Y : yγ ∈ O},

for γ ∈ Λ and O ∈ O(Xγ), as a subbasis for a topology on Y . So, O ∈ O(Y ) if and only if O is
a union of finite cylinder intersections

p−1
γ1 (O1) ∩ · · · ∩ p−1

γn (On).

This is the coarsest topology making all the projections continuous.

Theorem 5.26 (Tikhonov’s theorem). If (Xλ)λ∈Λ are all compact spaces, then Y =
∏
λ∈ΛXλ

is also compact.

Proof. By Theorem 5.22, we only need to consider cylinder sets p−1
λ (O). Let C be a collection

of cylinder sets with no finite subcollection covering Y . We need to show the entirety of C does
not cover Y . For each λ ∈ Λ, let Cλ =

{
O ∈ O(Xλ) : p−1

λ (O) ∈ C
}

. Not that Cλ does not cover
Xλ – otherwise it would have a finite subcover and the corresponding cylinder sets would cover
Y . So, we may pick yλ ∈ Xλ \

⋃
Cλ, for each λ ∈ Λ. This gives us (yλ)λ∈Λ ∈ Y not covered by

any Cλ. Thus C =
⋃
λ∈Λ Cλ is not a cover of Y .

Proposition 5.27. Every normed algebra A has compact character space ΦA.
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Proof. Due to linearity, each character ψ ∈ ΦA on a normed algebra A is determined by its
values on the unit ball A1 = {a ∈ A : ‖a‖ ≤ 1}. Also, ‖ψ‖ ≤ 1, so ψ ∈ ΦA maps A1 to C1.
Since C1 is compact, so is Y =

∏
a∈A1 C1, by Theorem 5.26. Now, ΦA is the intersection of the

following, for a, b ∈ A and t ∈ (0, 1):

Ct,a,b = {ψ ∈ Y : ψ(ta+ (1− t)b)− tψ(a)− (1− t)ψ(b) = 0},
Ma,b = {ψ ∈ Y : ψ(ab)− ψ(a)− ψ(b) = 0}.

Each set here is closed, hence their intersection ΦA is also closed. Since ΦA is a closed subset
of compact Y , ΦA is also compact.

Note that â(ψ) = ψ(a) is just the projection of ψ onto “coordinate a”. Thus, Gelfand
trasnfrom â : ΦA → C of a is continuous on ΦA. So, we can identify any commutative C*-
algebra A with the C*-subalgebra {â : a ∈ A} of continuous functions from ΦA → C. Does this
C*-subalgebra contain all continuous functions C(ΦA)? Not quite – the zero homomorphism
0 ∈ ΦA always gets mapped to 0 by any Gelfand transform â. But this is really the only
restriction. We show this by approximating any f ∈ C(ΦA) with f(0) = 0 by (ân). By
completeness, we have an → a ∈ A and hence f = â.

First, we show that f can at least be approximated on pairs of points. This will rely on the
following result, showing that characters are determined already by their scalar multiples.

Proposition 5.28. If φ, ψ ∈ ΦA \ {0} and φ = λψ, for some λ ∈ C, then φ = ψ.

Proof. Since ψ 6= 0, we have a ∈ A with ψ(a) 6= 0. Note λ2ψ(a)2 = φ(a)2 = φ(a2) = λψ(a2) =
λψ(a)2. Since ψ(a) 6= 0, this gives λ2 = λ and hence λ = 0 or λ = 1. Since φ 6= 0, we must
have λ = 1, so φ = ψ.

Proposition 5.29. For distinct φ, ψ ∈ ΦA \ {0} we have a ∈ A with φ(a) = 1 and ψ(a) = 0.

Proof. Take b ∈ A with φ(b) 6= 0. By Proposition 5.28,

ψ 6= ψ(b)

φ(b)
φ.

So we have c ∈ A with
φ(b)ψ(c) 6= ψ(b)φ(c).

Thus,
φ(ψ(c)b− ψ(b)c) = φ(b)ψ(c)− ψ(b)φ(c) 6= 0

and
ψ(ψ(c)b− ψ(b)c) = ψ(b)ψ(c)− ψ(b)ψ(c) = 0.

Taking

a =
ψ(c)b− ψ(b)c

φ(b)ψ(c)− ψ(b)φ(c)

gives φ(a) = 1 while ψ(a) = 0.

Corollary 5.30. For distinct φ, ψ ∈ ΦA \ {0} and α, β ∈ C, we have a ∈ A with

φ(a) = α and ψ(a) = β.
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The next step is to build up from points to the whole space using compactness. This is done
via the Stone-Wierstrass theorem.

Theorem 5.31 (Stone-Weirstrass theorem). Suppose that A ⊆ C(X,R) is closed under ∨ and
∧, defined by

(a ∨ b)(x) = max(a(x), b(x)),

(a ∧ b)(x) = min(a(x), b(x)).

If X is compact and f ∈ C(X,R), then

∀y, z ∈ X inf
a∈A

(|f(y)− a(y)|+ |f(z)− a(z)|) = 0 =⇒ inf
a∈A
‖f − a‖ = 0.

Proof. For every ε > 0 and y, z ∈ X, we have ayz ∈ A with

|f(y)− ayz(y)| < ε and |f(z)− ayz(z)| < ε.

In other words, both y and z are in the open subsets

Uyz = {x ∈ X : f(x)− ayz(x) < ε},
Vyz = {x ∈ X : ayz(x)− f(x) < ε}.

For a fixed y, compactness gives finite G ⊆ X with X =
⋃
z∈G Uyz. Taking ay =

∨
z∈G ayz ∈ A

gives f(x) − ay(x) < ε, for all x ∈ X. Also ay(x) − f(x) < ε, for all x ∈ Vy =
⋂
z∈G Vyz.

Again compactness gives finite F ⊆ X with X =
⋃
y∈F Vy. Taking a =

∧
y∈F ay ∈ A gives

a(x) − f(x) < ε, for all x ∈ X. But still f(x) − a(x) < ε, for all x ∈ X, as this holds for each
ay. Thus, ‖f − a‖ < ε. Since ε > 0 was arbitrary, infa∈A ‖f − a‖ = 0.

Theorem 5.32. If A ⊆ C(X,R) is a real Banach algebra, A is closed under ∨ and ∧.

Proof. We claim
√
a ∈ A, for any a ∈ A+ = C(X,R+). To see this, note that

√
r on R+ can be

approximated uniformely by polynomials with zero constant term on [0, s], for any s > 0:

• There is an analytic branch of
√
α+ βi defined on C \ (−R+).

• Thus, the power series centered at s converges uniformely on [δ, 2s− δ].
• So, we have a polynomial p with |p(r)−

√
r| < ε, for r ∈ [δ, 2s− δ].

• Then q(r) = p(r+δ)−p(δ) is a polynomial with zero constant term such that |q(r)−
√
r| <

ε′, for all r ∈ [0, 2s− 2δ] ⊇ [0, s].

Taking s = ‖a‖, q(a) ∈ A and ‖q(a)−
√
a‖ < ε. Since ε was arbitrary and A is complete and

closed,
√
a ∈ A.

Thus, for all a ∈ A, |a| =
√
a2 ∈ A and hence, for all a, b ∈ A,

a ∨ b =
1

2
(a+ b+ |a− b|) ∈ A and a ∧ b =

1

2
(a+ b− |a− b|) ∈ A.

Theorem 5.33. If A is a commutative C*-algebra, then

{â : a ∈ A} = C0(ΦA).
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Proof. Note that {â : a = a∗} ⊆ C(ΦA,R) is a real Banach algebra. By Theorem 5.32, it is
closed under ∨ and ∧. By Corollary 5.30, for any f ∈ C(ΦA,R) and φ, ψ ∈ ΦA \ {0}, we have
a ∈ A with â(φ) = f(φ) and â(ψ) = f(ψ). Since f is real, we can ensure that a = a∗. By
Theorem 5.31, as long as f(0) = 0, we have (an) ⊆ A with an = a∗n and ‖ân − f‖ → 0. By
completeness, an → a, so f = â.

Since every f ∈ C(ΦA) can be written as f = g + ih, for g, h ∈ C(ΦA,R), it follows that
f = b̂+ iĉ = â, for a = b+ ic ∈ A.

Thus, all commutative C*-algebras are isomorphic to C0(X), for some compact space X and
some fixed point 0 ∈ X.

Proposition 5.34. If A is unital, then the zero character 0 is isolated (that is open) in ΦA.

Proof. Note that ψ(1) = 1, for ψ ∈ ΦA \ {0} while 0(1) = 0. Thus,

{0} = 1̂−1

({
λ ∈ C : |λ| < 1

2

})
is open.

This means that ΦA \{0} is also compact and A is isomorphic to C(ΦA). In other words, all
unital commutative C*-algebras are isomorphic to those of the form C(X), for some compact
space X.

Even in non-commutative C*-algebras, the Gelfand representation gives a powerful “contin-
uous functional calculus” on normal elements. First, ote that any b ∈ A generates a C*-algebra
B given by

B = cl({p(b) : p is a *-polynomial with no constant term}).

Equivalently, B is the smallest C*-subalgebra of A containing b. If b is normal, i.e., b∗b = bb∗,
then p(b)q(b) = q(b)p(b), for all *-polynomials p and q, and hence B is commutative. Thus, by
Gelfand, we can identify B with C0(ΦB). For any f ∈ C0(C), not that f ◦ b̂ ∈ C0(ΦB). Thus,

we have some f(b) ∈ B with f̂(b) = f ◦ b̂, i.e., for all ψ ∈ ΦB,

ψ(f(b)) = f(ψ(b)).

In fact, we really only need f to be defined on σ(b).
Recall the definition of the spectrum of an element b of an algebra A:

σA(b) \ {0} =
{
λ ∈ C \ {0} : kλ−1b is not �-invertible in A

}
.

The ambient algebra A is crucial. If b is in a subalgebra B of A and λ−1b has no �-inverse in
A, then it centrainly can not have �-inverse in B either, so

σA(b) \ {0} ⊆ σB(b) \ {0}.

In general (even Banach) algebras, this inclusion can be strict. However, for C*-(sub)algebras,
we always have equality. For simplicity, we restrict ourselves to normal elements.

Theorem 5.35. If B is a C*-subalgebra of A and b ∈ B is normal, then

σA(b) \ {0} = σB(b) \ {0}.
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Proof. Note it suffices to take B as the C*-subalgebra generated by B. Let fn ∈ [0, 1]C be
“bump functions” at 1 with bumps of radius 1/n:

fn(α) = 0 ∨ (1− n|1− α|).

Given λ ∈ σB(b) \ {0}, let an = fn(λ−1b) so ‖an‖ = 1 and∥∥an − anλ−1b
∥∥→ 0.

Thus
an � λ−1b = λ−1b+ an − anλ−1b→ λ−1b.

If λ−1b had a �-inverse c in A, we would have a contradiction:

an = an � λ−1b� c→ λ−1b� c = 0.

Recall that for any function f in algebra C0(X),

ran(f) = σ(f) ∪ {0}.

Indeed, for λ /∈ σ(f) ∪ {0}, the �-inverse of λ−1f is given by

g(x) =
f(x)

f(x)− λ
.

If b ∈ A is normal and B ≈ C0(ΦB) is the C*-subalgebra it generates,

ran(̂b) = σB(b) ∪ {0} = σA(b) ∪ {0},

i.e., b̂ maps ΦB onto the spectrum b of A plus 0. Thus, f(b) only depends on the values of f on
σ(b).

In particular, if b ∈ A is normal and σ(b) ⊆ R+, then
√
b is defined. Moreover,

√
b =
√
b
∗

and b =
√
b
√
b =
√
b
∗√
b
∗
, so

σ(b) ⊆ R+ =⇒ b ∈ A+ = {a∗a : a ∈ A}.

The goal is to show that the converse also holds

Proposition 5.36. For normal b ∈ A,

σ(b) ⊆ R+ ⇐⇒ ‖λ1− b‖ ≤ λ,

for some/all λ ≥ ‖b‖.

Proof. Let B ≈ C(ΦB \{0}) be the C*-subalgebra of A′ generated by b and 1. The ran λ̂1 = {λ}
and ran b̂ = σ(b) and hence

‖λ1− b‖ =
∥∥∥λ̂1− b̂

∥∥∥ = λ−min(σ(b)).

Thus, ‖λ1− b‖ ≤ λ if and only if min(σ(b)) ≥ 0 if and only if σ(b) ⊆ B+.
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Corollary 5.37. For normal a, b ∈ A, if σ(a), σ(b) ⊆ R+, then σ(a+ b) ⊆ R+.

Proof. Follows from the previous result since ‖a+ b‖ ≤ ‖a‖+ ‖b‖ and

‖(‖a‖+ ‖b‖)1− (a+ b)‖ ≤ ‖‖a‖1− a‖+ ‖‖b‖1− b‖ ≤ ‖a‖+ ‖b‖.

Theorem 5.38. For any C*-algebra A, A+ = {b ∈ A : b is normal and σ(b) ⊆ R+}.

Proof. We already saw that b ∈ A+ if b is normal and σ(b) ⊆ R+. Conversely, say b ∈ A+, i.e.,
b = a∗a, for some a ∈ A. Then

b∗ = (a∗a)∗ = a∗a∗∗ = a∗a = b

so b is normal and σ(b) ⊆ R.
Let b+ = f+(b) and b− = f−(b), where f+, f− ∈ RR

+ are definded by

f+(r) = 0 ∨ r and f−(r) = 0 ∨ −r.

Now,
(a
√
b−)∗a

√
b− =

√
b−a

∗a
√
b− =

√
b−(b+ − b−)

√
b− = −b2−.

Let a
√
b− = x+ iy for self-adjoint x, y ∈ A. Then

a
√
b−(a

√
b−)∗ = 2(x2 + y2)− (a

√
b−)∗a

√
b−.

So by the previous result on sums, σ(a
√
b−(a

√
b−)∗) ⊆ R+ and thus

σ(−b2−) = σ((a
√
b−)∗a

√
b−) ⊆ R+ ∩ R− = {0}.

Thus, b− = 0, i.e., b = b+ and hence σ(b) = σ(b+) ⊆ R+.

For a C*-algebra A, we have the following

A+ = {b∗b : b ∈ A}
=
{
b2 : b = b∗

}
= {b : b∗b = bb∗ and σ(b) ⊆ R+}.

In particular, A+ form a subsemigroup of A, i.e., A+ +A+ ⊆ A+.

5.2 GNS-construction

The next goal is to represent non-commutative C*-algebras on Hilber spaces, i.e., as C*-
subalgebras of bounded linear operators B(H).

We use A+ to define a relation ≤ on Asa = {b ∈ A : b = b∗} by

a ≤ b ⇐⇒ b− a ∈ A+.

Equivalently, a ≤ b means b ∈ A+ + a. Since A+ is a (additive) subsemigroup of the (additive)
semigroup Asa, ≤ is transitive. Since 0 ∈ A+, ≤ is also reflexive. Since A+ ∩ −A+ = {0}, ≤ is
also symmetric. Thus ≤ is a partial order on Asa.

30



Proposition 5.39. For any a, b, c ∈ A, if a ≤ b, then c∗ac ≤ c∗bc.

Proof. If a ≤ b, then b − a = d∗d, for some d ∈ A. Then c∗bc − c∗ac = c∗(b − a)c = c∗d∗dc =
(cd)∗cd ∈ A+.

Proposition 5.40. For any a, b ∈ A,

a∗b+ b∗a ≤ a∗a+ b∗b,

(a+ b)∗(a+ b) ≤ 2(a∗a+ b∗b).

Proof. For the first inequality, 0 ≤ (a − b)∗(a − b) = a∗a − a∗b − b∗a + b∗b. For the second,
(a+ b)∗(a+ b) ≤ a∗a+ a∗b+ b∗a+ b∗b ≤ 2(a∗a+ b∗b).

Definition 5.41. We call C ⊆ A+ a cone if 0 ∈ C = C + C = R+C = C≥. We call I ⊆ A a
left ideal if 0 ∈ I = I + I = CI = AI.

Proposition 5.42. If C ⊆ A+ is a cone, then I = {b ∈ A : b∗b ∈ C} is a left ideal. Moreover
I is closed if C is closed, since b 7→ b∗b is continuous.

Proof. If a, b ∈ I, then a+ b ∈ I since

(a+ b)∗(a+ b) ≤ 2(a∗a+ b∗b) ∈ R+(C + C) ⊆ C.

If a ∈ I and λ ∈ C, then λa ∈ I since (λa)∗(λa) = λλa∗a ∈ R+C ⊆ C. If a ∈ A and b ∈ I,
then (ab)∗ab = b∗a∗ab ≤ ‖a∗a‖b∗b ∈ R+C ⊆ C. Also 0∗0 = 0 ∈ C so 0 ∈ I and hence I is a left
ideal.

Definition 5.43. We call φ ∈ CA positive if φ(A+) ⊆ R+.

Example 5.44. Any character ψ ∈ ΦA is positive.

Proposition 5.45. Every positive linear φ is automatically continuous.

Proof. Recall that continuous is equivalent to bounded. For all a ∈ A, a = b+ ci, for b, c ∈ Asa

with ‖b‖, ‖c‖ ≤ ‖a‖. For all a ∈ Asa, a = a+ − a−, for a+, a− ∈ A+ with ‖a+‖, ‖a−‖ ≤ ‖a‖.
Thus it suffices for φ to be bounded on A+. If not, we would have (an) ⊆ A+ with ‖an‖ ≤ 1

2n

and φ(an) = 1. Then a =
∑
an ∈ A+ and φ(a) ≥

∑
φ(an)→∞, a contradiction.

Any positive linear φ defines a positive sesquilinear form φ(b∗a). Thus the Cauchy-Schwarz
inequality gives

|φ(b∗a)|2 ≤ φ(b∗b)φ(a∗a).

Let
I = {b ∈ A : φ(b∗b) = 0} = {b ∈ A : ∀a ∈ A φ(ab) = 0}.

Then I is a left ideal. Cosider the quotient vector space A/I. Let va = a + I so A/I =
{va : a ∈ A}. Define 〈·, ·〉 on A/I by

〈va, vb〉 = φ(b∗a).

This is a well-defined inner product on A/I. Thus, we can complete A/I to obtain a Hilbert
space H. Every a ∈ A determines a map π(a) on A/I by

π(a)(vb) = vab.
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This is well-defined because I is a left ideal. We immediately see that π(a) is linear. Also,

‖π(a)(vb)‖2 = 〈vab, vab〉 = φ(b∗a∗ab) ≤ ‖a‖2φ(b∗b) = ‖a‖2‖vb‖2.

Thus π(a) is bounded and extends to a bounded linear map on H. Also

〈π(a)(vb), vc〉 = 〈vab, vc〉 = φ(c∗ab) = 〈vb, va∗c〉 = 〈vb, π(a∗)(vc)〉.

This shows that π(a∗) = π(a)∗, which is its adjoint operator on H. So π represents A on H,
i.e., we can identify A with π(A) ⊆ B(H).

So, from positive linear φ, we defined a representation π : A→ B(H). It remains to show that
such positive linear φ exists. In the commutative case, we have lots of characters. Indeed, by
Gelfand, commutative C*-algebras have the form C0(X). Then every x ∈ X gives a character
f 7→ f(x) on C0(X). Thus, even for non-commutative A, we have lots of characters on the
commutative C*-subalgebra generated by any normal a ∈ A. The issue is that these may not
extend to characters on A itself. However, they will extend to positive linear φ on A. Proving
this relies on Hahn-Banach extension theorem.

Theorem 5.46 (Hahn-Banach). If B is a subspace of a real normed space A, then any R-valued
linear φ on B with ‖φ‖ = 1 has a linear extension ψ on A with ‖ψ‖ = 1.

Proof. By Kuratowski-Zorn, we have a maximal linear extension ψ with ‖ψ‖ = ‖φ‖ on a sub-
space C containing B. We claim that C = A.

If not, take a ∈ A \ C and note that, for any b, c ∈ C,

ψ(b)− ψ(c) = ψ(b− c) ≤ ‖b− c‖ = ‖b− a+ a− c‖ ≤ ‖b− a‖+ ‖a− c‖.

Take λ ∈ R with
sup
b∈C

(ψ(b)− ‖b− a‖) ≤ λ ≤ inf
c∈C

(‖a− c‖+ ψ(c)).

Define linear θ on Ra + C ) C by θ(βa + c) = βλ + ψ(c). Then ‖θ‖ = 1, contradicting
maximality.

Any C-linear ψ ∈ CA gives R-linear φ ∈ RA by φ(v) = R(ψ(v)). Note that ‖φ‖ = ‖ψ‖:

• Certainly, ‖φ‖ ≤ ‖ψ‖ since |R(λ)| ≤ |λ|, for all λ ∈ C.

• Conversely,

1 = ψ(ψ(v)−1v) = φ(ψ(v)−1v) ≤ ‖φ‖|ψ(v)−1v| = ‖φ‖|ψ(v)|−1|v|.

Thus |ψ(v)| ≤ ‖φ‖|v|, for all v with ψ(v) 6= 0, so ‖ψ‖ ≤ ‖φ‖.

Also ψ(v) = φ(v)− iφ(iv) since λ = R(λ)− iR(iλ), for all λ ∈ C. Conversely, given any R-linear
φ ∈ RA, we can define

ψ(v) = φ(v)− iφ(iv).

Such ψ is C-linear and φ(v) = R(φ(v)). In other word,s we have a norm-preserving correspon-
dence between real linear functionals on A and complex linear functionals on A.

Corollary 5.47. Any complex linear functional φ on a subspace B of a complex normed space
A has a linear extension with the same norm on the entirety of A.
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Corollary 5.48. A linear functional φ on a unital C*-algebra A is positive if and only if
φ(1) = ‖φ‖.

Proof. ( ⇐= ) φ(1) = ‖φ‖. We first show that φ is self-adjoint, i.e., φ(Asa) ⊆ R. To see this,
take a ∈ Asa, n ∈ Z and let b = n1− ia. Then

‖b‖2 = ‖b∗b‖ = ‖(n1 + ia)(n1− ia)‖ =
∥∥n21 + a2

∥∥ ≤ n2 + ‖a‖2.

Let φ(a) = r + is. We need to show that s = 0. To see this note

|φ(b)|2 = |nφ(1)− iφ(a)|2 = |n‖φ‖ − ir + s|2 = (n‖φ‖+ s)2 + r2

= n2‖φ‖2 + 2ns‖φ‖+ s2 + r2 ≤ ‖φ‖2‖b‖2 ≤ ‖φ‖2(n2 + ‖a‖2).

Thus, 2ns‖φ‖+ s2 + r2 ≤ ‖φ‖2‖a‖2, for all n ∈ Z, and hence s = 0.
To see that φ is positive, take a ∈ A+ with ‖a‖ = 1. By Gelfand, we know that ‖1− a‖ ≤ 1.

Thus,
‖φ‖ − φ(a) = φ(1)− φ(a) = φ(1− a) ≤ ‖φ‖,

so φ(a) ≥ 0. So if φ(1) = ‖φ‖, then φ is indeed positive.
( =⇒ ) Conversely, assume φ is positive and take any a ∈ A with ‖a‖ = 1. Then ‖a∗a‖ =

‖a‖2 = 1, so a∗a ≤ 1 by Gelfand. As φ is positive, φ(a∗a) ≤ φ(1) so Cauchy-Schwartz gives

|φ(a)|2 = |φ(1a)|2 ≤ φ(1)φ(a∗a) ≤ φ(1)2.

Since a was arbitrary, this shows that ‖φ‖ = φ(1).

Definition 5.49. A state on a C*-algebra is a positive linear functional φ with ‖φ‖ = 1.

Theorem 5.50. For any a ∈ A+ we have a state φ on A with φ(a) = ‖a‖.

Proof. Consider the C*-subalgebra generated by a and 1 in the unitisation Ã. By Gelfand, this
is isomorphic to C(X), for some compact X. Evaluating at some x ∈ X gives ‖a‖. So we have
a character φ on this C*-subalgebra with φ(a) = ‖a‖. Note φ(1) = 1 = ‖φ‖. By Hahn-Banach,
φ extends to Ã without changing the norm. By the previous result, φ is therefore positive and
hence a state.

Corollary 5.51. For any a ∈ A, we have a representation π : A→ B(H) with ‖π(a)‖ = ‖a‖.

Proof. We may assume A is unital (otherwise unitize then restrict π to A). Take a state φ with
φ(a∗a) = ‖a∗a‖ = ‖a‖2. Let π be the GNS representation coming from φ. Then

‖π(a)‖2 ≥ 〈π(a)v1, π(a)v1〉 = 〈va, va〉 = φ(a∗a) = ‖a‖2.

To obtain a faithful representation we combine all these πa, for a ∈ A, i.e., define

π(b) =
∏
a∈A

πa(b) ∈
∏
a∈A
B(Ha) ≈ B(H),

where

H =
⊕
a∈A

Ha =

{
(wa) ∈

∏
a∈A

Ha :
∑
a∈A
‖wa‖2 <∞

}
.

Then π(a) = π(b) if and only if a = b, i.e., we can identify A with π(A) ⊆ B(H).
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